Parallel Coordinate Descent for L;-Regularized Loss Minimization:
Theory Supplement

Abstract

In this supplementary document, we give de-
tailed proofs of all theoretical results of the
main paper.

1. Preliminaries

General form for our optimization problems, mod-
ified to use duplicate features and have a twice-
differentiable regularization term:

n 2d
: N

xrélﬂléld L(a; x,y;) + A Z x; (1)
+ =1 j=1

Instantiation of Eq. (1) for Lasso (?):

2d
F(x)=3lAx—yl5+ 1)z (2)

J=1

Instantiation of Eq. (1) for sparse logistic regression:

n 2d
F(x) = Z log (1 + exp (—y;al x)) + A Z z; (3)

Update rule for z; < x; + dx;:

—(VF(x));/8} (4)

dz; = max{—z;,

2. Detailed Proofs:  for Squared Loss
and Logistic Loss

Assumptions 2.1 and 3.1 both upper bound the change
in objective from updating x with Ax. We show how
to do so for Assumption 3.1, which generalizes As-
sumption 2.1. For both losses, we upper-bound the
objective using a second-order Taylor expansion of F'
around Xx.
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2.1. Proof: § for Squared Loss

VF(x) =
V2F(x)

ATAx - ATy + )1 (5)
ATA (6)

where 1 is an all-ones vector of the appropriate size.
Note that, since derivatives of (2) of order higher than
two are zero, the second order Taylor expansion is ex-
act:

F(x + Ax) )
= F(x) + (Ax)TVF(x) + 3 (Ax)TV2F(x)Ax

Plugging in the second order derivative gives § = 1:

F(x+ Ax) (8)
= F(x) + (Ax)TVF(x) + 3 (Ax)TATAAx.

This bound is exact for squared loss but not for all
losses.

2.2. Proof: § for Logistic Loss
-1
1+exp(—a;rx)
bility of y; given a;.

Define p; = , the class conditional proba-

[
>
%
[

A+ yiAii(pi—1)  (9)
i=1

32

ZAiink (1—=pi)pi  (10)
i=1

Taylor’s theorem tells us that there exists an X s.t.

F(x + Ax)

< F(x) + (Ax)TVF(x) 4+ 5(Ax)T(V2F(x))Ax
(11)

The second-order term is maximized by setting p; = %

in az%uF (x) for each j, k. Plugging this in gives our

bound with 8 = i:

F(x+ Ax) (12)
< F(x) + (Ax)TVF(x) + 1 (a0 ATAAx
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3. Duplicated Features

Our work, like Shalev-Shwartz and Tewari (?)’s work,
uses duplicated features (with x € R2?? and A €
R"*24) "but our actual algorithm does not (so x € R%
and A € R"*9). They point out that the optimiza-
tion problems with and without duplicated features
are equivalent.

To see this, consider the form of F(x) in Eq. (1). z;
only appears in the dot product a7 x via A; jz;, and
Zq+; only appears via —A; jxq4;, where A is the orig-
inal design matrix without duplicated features. Sup-
pose x; > 0 and z44; > 0, and assume w.l.o.g. that
z; > ¥qy;. Then setting x; +— x; — v4y; and
ZTa4+j <— 0 would give the same value for the loss
term L(al'x,y;), and it would decrease the regulariza-
tion penalty by 2Az44;. Therefore, at the optimum,
at most one of z;,x44; will be non-zero, and the ob-
jectives with and without duplicated features will be
equal.

4. Detailed Proof: Theorem 2.1

Define a potential function, where x* is the optimal

weight vector:
\I/ _ ﬁ * (12 F
(x) = Sllx = x|z + F(x) (13)

Claim: After updating weight x; with dz;,

U(x) = V(x+ Ax) > (z; —2j)(VF(x));  (14)
To see this:
U(x) — U(x + Ax)
= 5 [lx =[5~ x + Ax —x"5]  (15)
+F(x) — F(x + Ax)
= —g [2(x — x*)T Ax + (6z;)?] (16)
+F(x) — F(x+ Ax)

2,3( xTAx + x*TAx — ‘”;7)) (17)

—(Ax)TVF(x) — £(5z;)>

=B (—z;0z; + ;0w — (6xj)2) (18)
—6z;(VF(x)),

> B (—ajdr; — (0x5)*) — 23 (VF(x)); (19)
—bx;(VF(x));

Above, Eq. (17) used Assumption 2.1. Eq. (19) used
the update rule for choosing dx; in Eq. (4). Now there
are two possible cases stemming from the update rule.
Case 1: If z; = —x;, then Eq. (19) simplifies to

V(x) = W(x+Ax) > (z; —27)(VF(x));  (20)

Case 2: If dz; =
simplifies to

—(VF(x));/8, then Eq. (19) again

U(x) — U(x + Ax) (21)

> 2j(VF(x)); — B(0x;)* — 2} (VF(x)); (22)
+8(0x4)*

= (zj = 27)(VF(x)); (23)

Having proved our claim, we can now take the expec-
tation of Eq. (14) w.r.t. j, the chosen weight:

E [¥(x) — ¥U(x + Ax)]
> E [(z; — 2})(VF(x));] (24)
1
- LB x-x)VF]  9)
1 *
> 5B [F(x) — F(x")] (26)

In Eq. (25), we write 5 instead of 5 (which Shalev-
Shwartz and Tewari (?) write), for there are another
d duplicates of each of the original d weights. Eq. (26)

holds since F'(x) is convex.

Summing over T + 1 iterations gives:

T
E Z\P(X(t))—\I/(X(Hl))]
t=0
1 [& , T+1_,
> B ;F(XU - g Fx) @)
> L B[P - Pl (29)

where Eq. (28) wused the fact that F(x¢) de-
creases monotonically with ¢. Since ZtT:o T(x®) —
U(xtD) = w(x@) — ¥(x(T+D), rearranging the
above inequality gives

E[F(x )} (X*) (29)
<7 E[\p ©) — w(xT)| - (30)
< f E[\I/ } (31)
— o BB R e

where Eq. (31) used ¥(x) > 0 and Eq. (32) used x(©) =
0.

This bound divides by T + 1 instead of T (which
Shalev-Shwartz and Tewari (?) do). Also, their theo-
rem has an extra factor of % on the right-hand side but
should not due to the doubled length of x (though care-
ful analysis without duplicated features could likely
re-introduce the 3).
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5. Detailed Proof: Theorem 3.1

Start with Eq. (8), and note that the update rule in
Eq. (4) implies that dz; < —(VF(x)), (with 8 =1 for
Lasso). This gives us:

F(x+ Ax) — F(x)

< —(A)T(Ax) + L(Ax)TATAAx  33)

Noting that Ax can only have non-zeros in the indices
in P, we can rewrite this as

F(x + Ax) — F(x)
s - Zje??t(‘sxj)z + %Zi,jept (ATA); j0xi0z;
(34)
Separating out the diagonal terms in the sum over i, j
and using diag(AT A) = 1 gives the desired result:

F(x+ Ax) — F(x)
< =5 Ljep, (025)° + 5 Zi7j§7?t7(ATA)i,j51?i5Ij
17]
(35)

6. Detailed Proof: Theorem 3.2

This proof uses the result from Lemma 3.3, which is
proven in detail in Sec. 7.

Modify the potential function used for sequential SCD:

W) = DB+ P, (36)

where € is defined as in Eq. (67). Assume that P is
chosen s.t. € < 1.

Write out the change in the potential function from an
update Ax:

U(x) — ¥(x+ Ax)

= & [lx—x [}~ I+ Ax — x°[3]
+ lie [F(x) — F(x + Ax)] (37)
= g :—2XTAX +2x* T Ax — (AX)T(AX):|
+15 [F(x) — F(x + Ax)] (38)

=4 Z —xj0x; + x;0T; — (6?)2
| JEP:

+1— [F(x) = F(x + Ax)] (39)

=

Take the expectation w.r.t. Py, and use Lemma 3.3:

Ep, [¥(x) — ¥(x + Ax)]

= BPE; [—xjéxj +xjdx; — (515)2]
+iEpt [F(x) — F(x + Ax)] (40)

R S SN CL. Dl
> BPE; |—x;0x; + x;0x; 5

pLE [&cj(w(x))j L eag e)(éxjf] (41)

= ,BPEJ‘ |:*$]'5.’Ej + .’L’;(S.’EJ — 17;(5$])2i|
—P1E; [07,(VF(x));] (42)

> BPE; [ —xj0x; — x5 (VF(x)); /8

2 (5ay)? - ﬁéwnx))j/ﬁ} (43)

where the last inequality used the update rule in
Eq. (4), which implies dz; > —(VF(x));/5.

Consider the two cases in the update rule in Eq. (4).
Case 1: d0z; = —x; > —(VF(x));/8.

Br, [¥(x) — (x + Ax)

> BPE; | —zj0z; — x5 (VF(x));/8

TR iwj(VF(X))j/ﬁ} (44)
= BPE; _ﬁxaﬂ%’ —z;(VF(x));/8

+ﬁxj(VF(X))j/ﬂ} (45)

z;(VF(x));/B — 2j(VF(x));/8

> BPE; | — 1=

+1£5x]-<VF<x>>j/5} (46)
_pE, [m - w?)(VF(x))J] . (47)
Case 2: dz; = —(VF(x));/8 > —z;.

Exp, [¥(x) — ¥(x + Ax)]

> 7B, | = ast0; o} (VFGO),/8] (49

> 7B | (& — ) (VFG0); . (19)

In both cases,

Ep, [¥(x) — ¥(x + Ax)]

> PR, (2, — )(VEG),]) (50)
=2 (x-x")TVF(x) (51)
> B (F(x) - F(x), (52
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where the last inequality holds since F(x) is convex.

Now sum over T + 1 iterations (with an expectation
over the P, from all iterations):

E ZT:\I'(X(t) (=)
t=0
> 5B XT:F (x*) (53)
t=0
=2 |E XT:F —(T+ 1)F(x*)| (54)
> B [;0[F<X<T>>} AC | )

where Eq. (55) uses the result from Lemma 3.3, which
implies that the objective is decreasing in expectation
for P s.t. € < 1. (To see why the objective decreases
in expectation, plug in the update rule in Eq. (4) into
Eq. (68), and note that the right-hand side of Eq. (68)
is negative.)

Since Z?:O \I/(x(t)) — \IJ(X(t+1)) - \II(X(O)) 7\1/(X(T+1))7
rearranging the above inequality gives

E [F(xm)} ~ F(xY)

< 24 E [\If(x@)) - \IJ(X(T+1))} (56)
< s B [ W) (57)

— by [SIx B + PO (58)

7. Detailed Proof: Lemma 3.3

Note: Assume the algorithm chooses a set of P coor-
dinates, not a multiset.

Starting with Assumption 3.1, we can rearrange terms
as follows:

F(x+ Ax) — F(x) (59)
< (Ax)'VF(x) + 5(Ax)TATA(Ax)

Take the expectation w.r.t. P, the set of updated
weights, and use the fact that each set P, is equally

likely to be chosen.
Ep, [F(x + Ax) — F(x)]

<Ep, |3 60,(VFR), (60)

JEP:

+§E7)t Z §xi(ATA)i’j5xj

©,J€Py

—Ep, | 3 00, (VF(x), + 502, (61)

JEP
+§E7)t Z §xi(ATA)i,j5xj
1,JEP
i#j

= PE; 60, (VF(x)); + §(62;)’] (62)

JrgP(P —DE; j.i%j [51’2'(A A)i,jéxj] )

where E;[] denotes an expectation w.r.t. j cho-
sen uniformly at random from {1,...,2d} and where
E; ;.i»+;[] denotes an expectation w.r.t. a pair of dis-
tinct indices ¢,j chosen uniformly at random from
{1,...,2d}.

Since indices in P; are chosen uniformly at random,
the expectations may be rewritten as

Ep, [F(x + Ax) — F(x) (63)
2 |80 (VFE) + §(A0)T(A0)] (o)

+8 2L [(Az)TATA(AT) —

d(2d=1) (Az)" (Az)],

where we are overloading the notation Az: in Eq. (63),
Ax only has non-zero entries in elements indexed by
P:; in Eq. (64), Az can have non-zero entries every-
where (set by the update rule in Eq. (4)).

the largest elgenvadue7 of a
matrix M may be expressed as max, NZIZ, see, e.g.,
Strang (?). Letting p be the spectral radius of AT A,

upper-bound the second-order term in Eq. (64):

The spectral radius, i.e.,

Ep, [F(x + Ax) — F(x)
< & (A0 (VFX) + 5 (a0 (ax)|  (65)
Stz [(A2) (A2) = (A0)T (Ax)]
= 31(A2)" (VF(x)) (66)
+55 (1+ C5950) (an)(ax)

+

2d 2d—1

Letting

—1)(p—1
= t 23(& )a (67)
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we can rewrite the right-hand side in terms of expec-
tations over j € {1,...,2d} to get the lemma’s result:

Ep, [F(x + Ax) — F(x)]
<PE; |02;(VF(x)); + 2(1+€)(dx;)| . (68)

Note: If we let the algorithm choose a multiset, rather
than a set, of P coordinates, then we get ¢ = (Pg;)p,
which gives worse scaling than the € above. (Compare
the two when all features are uncorrelated so that p =
1. With a set, the € above indicates that we can use
P = 2d and get good scaling; with a multiset, the
changed e indicates that we can be hurt by using larger
P.)




