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Abstract

In this supplementary document, we give de-
tailed proofs of all theoretical results of the
main paper.

1. Preliminaries

General form for our optimization problems, mod-
ified to use duplicate features and have a twice-
differentiable regularization term:

min
x∈R2d

+

n∑
i=1

L(âTi x, yi) + λ

2d∑
j=1

xj (1)

Instantiation of Eq. (1) for Lasso (?):

F (x) = 1
2‖Ax− y‖22 + λ

2d∑
j=1

xj (2)

Instantiation of Eq. (1) for sparse logistic regression:

F (x) =

n∑
i=1

log
(
1 + exp

(
−yiâTi x

))
+ λ

2d∑
j=1

xj (3)

Update rule for xj ← xj + δxj :

δxj = max{−xj ,−(∇F (x))j/β} (4)

2. Detailed Proofs: β for Squared Loss
and Logistic Loss

Assumptions 2.1 and 3.1 both upper bound the change
in objective from updating x with ∆x. We show how
to do so for Assumption 3.1, which generalizes As-
sumption 2.1. For both losses, we upper-bound the
objective using a second-order Taylor expansion of F
around x.
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2.1. Proof: β for Squared Loss

∇F (x) = ATAx−ATy + λ1 (5)

∇2F (x) = ATA (6)

where 1 is an all-ones vector of the appropriate size.
Note that, since derivatives of (2) of order higher than
two are zero, the second order Taylor expansion is ex-
act:

F (x + ∆x)
= F (x) + (∆x)T∇F (x) + 1

2 (∆x)T∇2F (x)∆x
(7)

Plugging in the second order derivative gives β = 1:

F (x + ∆x)
= F (x) + (∆x)T∇F (x) + 1

2 (∆x)TATA∆x .
(8)

This bound is exact for squared loss but not for all
losses.

2.2. Proof: β for Logistic Loss

Define pi = 1

1+exp(−aT
i x)

, the class conditional proba-

bility of yi given ai.

∂
∂xj

F (x) = λ+

n∑
i=1

yiAij (pi − 1) (9)

∂2

∂xj∂xk
F (x) =

n∑
i=1

AijAik (1− pi) pi (10)

Taylor’s theorem tells us that there exists an x̂ s.t.

F (x + ∆x)
≤ F (x) + (∆x)T∇F (x) + 1

2 (∆x)T (∇2F (x̂))∆x
(11)

The second-order term is maximized by setting pi = 1
2

in ∂2

∂xj∂xk
F (x) for each j, k. Plugging this in gives our

bound with β = 1
4 :

F (x + ∆x)

≤ F (x) + (∆x)T∇F (x) + 1
2

(∆x)TATA∆x
4

(12)
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3. Duplicated Features

Our work, like Shalev-Shwartz and Tewari (?)’s work,
uses duplicated features (with x ∈ R2d and A ∈
Rn×2d), but our actual algorithm does not (so x ∈ Rd+
and A ∈ Rn×d). They point out that the optimiza-
tion problems with and without duplicated features
are equivalent.

To see this, consider the form of F (x) in Eq. (1). xj
only appears in the dot product âTi x via Ai,jxj , and
xd+j only appears via −Ai,jxd+j , where A is the orig-
inal design matrix without duplicated features. Sup-
pose xj > 0 and xd+j > 0, and assume w.l.o.g. that
xj > xd+j . Then setting xj ←− xj − xd+j and
xd+j ←− 0 would give the same value for the loss
term L(âTi x, yi), and it would decrease the regulariza-
tion penalty by 2λxd+j . Therefore, at the optimum,
at most one of xj , xd+j will be non-zero, and the ob-
jectives with and without duplicated features will be
equal.

4. Detailed Proof: Theorem 2.1

Define a potential function, where x∗ is the optimal
weight vector:

Ψ(x) =
β

2
‖x− x∗‖22 + F (x) (13)

Claim: After updating weight xj with δxj ,

Ψ(x)−Ψ(x + ∆x) ≥ (xj − x∗j )(∇F (x))j (14)

To see this:

Ψ(x)−Ψ(x + ∆x)

= β
2

[
‖x− x∗‖22 − ‖x + ∆x− x∗‖22

]
(15)

+F (x)− F (x + ∆x)

= −β2
[
2(x− x∗)T∆x + (δxj)

2
]

(16)

+F (x)− F (x + ∆x)

≥ β
(
−xT∆x + x∗T∆x− (δxj)2

2

)
(17)

−(∆x)T∇F (x)− β
2 (δxj)

2

= β
(
−xjδxj + x∗jδxj − (δxj)

2
)

(18)

−δxj(∇F (x))j

≥ β
(
−xjδxj − (δxj)

2
)
− x∗j (∇F (x))j (19)

−δxj(∇F (x))j

Above, Eq. (17) used Assumption 2.1. Eq. (19) used
the update rule for choosing δxj in Eq. (4). Now there
are two possible cases stemming from the update rule.
Case 1: If δxj = −xj , then Eq. (19) simplifies to

Ψ(x)−Ψ(x + ∆x) ≥ (xj − x∗j )(∇F (x))j (20)

Case 2: If δxj = −(∇F (x))j/β, then Eq. (19) again
simplifies to

Ψ(x)−Ψ(x + ∆x) (21)

≥ xj(∇F (x))j − β(δxj)
2 − x∗j (∇F (x))j (22)

+β(δxj)
2

= (xj − x∗j )(∇F (x))j (23)

Having proved our claim, we can now take the expec-
tation of Eq. (14) w.r.t. j, the chosen weight:

E [Ψ(x)−Ψ(x + ∆x)]

≥ E
[
(xj − x∗j )(∇F (x))j

]
(24)

=
1

2d
E
[
(x− x∗)T∇F (x)

]
(25)

≥ 1

2d
E [F (x)− F (x∗)] (26)

In Eq. (25), we write 1
2d instead of 1

d (which Shalev-
Shwartz and Tewari (?) write), for there are another
d duplicates of each of the original d weights. Eq. (26)
holds since F (x) is convex.

Summing over T + 1 iterations gives:

E

[
T∑
t=0

Ψ(x(t))−Ψ(x(t+1))

]

≥ 1

2d
E

[
T∑
t=0

F (x(t))

]
− T + 1

2d
F (x∗) (27)

≥ T + 1

2d

[
E
[
F (x(T ))

]
− F (x∗)

]
(28)

where Eq. (28) used the fact that F (xt) de-

creases monotonically with t. Since
∑T
t=0 Ψ(x(t)) −

Ψ(x(t+1)) = Ψ(x(0)) − Ψ(x(T+1)), rearranging the
above inequality gives

E [F (xT )]− F (x∗) (29)

≤ 2d

T + 1
E
[
Ψ(x(0))−Ψ(x(T+1))

]
(30)

≤ 2d

T + 1
E
[
Ψ(x(0))

]
(31)

=
2d

T + 1

[
β

2
‖x∗‖22 + F (x(0))

]
(32)

where Eq. (31) used Ψ(x) ≥ 0 and Eq. (32) used x(0) =
0.

This bound divides by T + 1 instead of T (which
Shalev-Shwartz and Tewari (?) do). Also, their theo-
rem has an extra factor of 1

2 on the right-hand side but
should not due to the doubled length of x (though care-
ful analysis without duplicated features could likely
re-introduce the 1

2 ).
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5. Detailed Proof: Theorem 3.1

Start with Eq. (8), and note that the update rule in
Eq. (4) implies that δxj ≤ −(∇F (x))j (with β = 1 for
Lasso). This gives us:

F (x + ∆x)− F (x)
≤ −(∆x)T (∆x) + 1

2 (∆x)TATA∆x
(33)

Noting that ∆x can only have non-zeros in the indices
in Pt, we can rewrite this as

F (x + ∆x)− F (x)
≤ −

∑
j∈Pt

(δxj)
2 + 1

2

∑
i,j∈Pt

(ATA)i,jδxiδxj
(34)

Separating out the diagonal terms in the sum over i, j
and using diag(ATA) = 1 gives the desired result:

F (x + ∆x)− F (x)
≤ − 1

2

∑
j∈Pt

(δxj)
2 + 1

2

∑
i,j∈Pt,
i 6=j

(ATA)i,jδxiδxj

(35)

6. Detailed Proof: Theorem 3.2

This proof uses the result from Lemma 3.3, which is
proven in detail in Sec. 7.

Modify the potential function used for sequential SCD:

Ψ(x) =
β

2
‖x− x∗‖22 + 1

1−εF (x), (36)

where ε is defined as in Eq. (67). Assume that P is
chosen s.t. ε < 1.

Write out the change in the potential function from an
update ∆x:

Ψ(x)−Ψ(x + ∆x)

= β
2

[
‖x− x∗‖22 − ‖x + ∆x− x∗‖22

]
+ 1

1−ε [F (x)− F (x + ∆x)] (37)

= β
2

[
−2xT∆x + 2x∗T∆x− (∆x)T (∆x)

]
+ 1

1−ε [F (x)− F (x + ∆x)] (38)

= β

∑
j∈Pt

−xjδxj + x∗jδxj −
(δxj)2

2


+ 1

1−ε [F (x)− F (x + ∆x)] (39)

Take the expectation w.r.t. Pt, and use Lemma 3.3:

EPt [Ψ(x)−Ψ(x + ∆x)]

= βPEj
[
−xjδxj + x∗j δxj −

(δxj)
2

2

]
+ 1

1−εEPt [F (x)− F (x + ∆x)] (40)

≥ βPEj
[
−xjδxj + x∗j δxj −

(δxj)
2

2

]
−P 1

1−εEj

[
δxj(∇F (x))j + β

2
(1 + ε)(δxj)

2

]
(41)

= βPEj
[
−xjδxj + x∗j δxj − 1

1−ε (δxj)
2
]

−P 1
1−εEj [δxj(∇F (x))j ] (42)

≥ βPEj
[
− xjδxj − x∗j (∇F (x))j/β

− 1
1−ε (δxj)

2 − 1
1−εδxj(∇F (x))j/β

]
(43)

where the last inequality used the update rule in
Eq. (4), which implies δxj ≥ −(∇F (x))j/β.

Consider the two cases in the update rule in Eq. (4).
Case 1: δxj = −xj ≥ −(∇F (x))j/β.

EPt [Ψ(x)−Ψ(x + ∆x)]

≥ βPEj
[
− xjδxj − x∗j (∇F (x))j/β

+ 1
1−εxjδxj + 1

1−εxj(∇F (x))j/β

]
(44)

= βPEj

[
ε

1−εxjδxj − x
∗
j (∇F (x))j/β

+ 1
1−εxj(∇F (x))j/β

]
(45)

≥ βPEj
[
− ε

1−εxj(∇F (x))j/β − x∗j (∇F (x))j/β

+ 1
1−εxj(∇F (x))j/β

]
(46)

= PEj

[
(xj − x∗j )(∇F (x))j

]
. (47)

Case 2: δxj = −(∇F (x))j/β ≥ −xj .

EPt [Ψ(x)−Ψ(x + ∆x)]

≥ βPEj
[
− xjδxj − x∗j (∇F (x))j/β

]
(48)

≥ PEj

[
(xj − x∗j )(∇F (x))j

]
. (49)

In both cases,

EPt
[Ψ(x)−Ψ(x + ∆x)]

≥ PEj
[
(xj − x∗j )(∇F (x))j

]
(50)

= P
2d (x− x∗)T∇F (x) (51)

≥ P
2d (F (x)− F (x∗)), (52)
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where the last inequality holds since F (x) is convex.

Now sum over T + 1 iterations (with an expectation
over the Pt from all iterations):

E

[
T∑
t=0

Ψ(x(t))−Ψ(x(t+1))

]

≥ P
2dE

[
T∑
t=0

F (x(t))− F (x∗)

]
(53)

= P
2d

[
E

[
T∑
t=0

F (x(t))

]
− (T + 1)F (x∗)

]
(54)

≥ P(T+1)
2d

[
E
[
F (x(T ))

]
− F (x∗)

]
, (55)

where Eq. (55) uses the result from Lemma 3.3, which
implies that the objective is decreasing in expectation
for P s.t. ε ≤ 1. (To see why the objective decreases
in expectation, plug in the update rule in Eq. (4) into
Eq. (68), and note that the right-hand side of Eq. (68)
is negative.)

Since
∑T
t=0 Ψ(x(t))−Ψ(x(t+1)) = Ψ(x(0))−Ψ(x(T+1)),

rearranging the above inequality gives

E
[
F (x(T ))

]
− F (x∗)

≤ 2d
P(T+1)E

[
Ψ(x(0))−Ψ(x(T+1))

]
(56)

≤ 2d
P(T+1)E

[
Ψ(x(0))

]
(57)

= 2d
P(T+1)

[
β
2 ‖x

∗‖22 + 1
1−εF (x(0))

]
. (58)

7. Detailed Proof: Lemma 3.3

Note: Assume the algorithm chooses a set of P coor-
dinates, not a multiset.

Starting with Assumption 3.1, we can rearrange terms
as follows:

F (x + ∆x)− F (x) (59)

≤ (∆x)T∇F (x) + β
2 (∆x)TATA(∆x)

Take the expectation w.r.t. Pt, the set of updated
weights, and use the fact that each set Pt is equally

likely to be chosen.

EPt
[F (x + ∆x)− F (x)]

≤ EPt

∑
j∈Pt

δxj(∇F (x))j

 (60)

+β
2EPt

 ∑
i,j∈Pt

δxi(A
TA)i,jδxj


= EPt

∑
j∈Pt

δxj(∇F (x))j + β
2 (δxj)

2

 (61)

+β
2EPt

 ∑
i,j∈Pt
i 6=j

δxi(A
TA)i,jδxj


= PEj

[
δxj(∇F (x))j + β

2 (δxj)
2
]

(62)

+β
2 P(P− 1)Ei,j : i6=j

[
δxi(A

TA)i,jδxj
]
,

where Ej [] denotes an expectation w.r.t. j cho-
sen uniformly at random from {1, . . . , 2d} and where
Ei,j : i 6=j [] denotes an expectation w.r.t. a pair of dis-
tinct indices i, j chosen uniformly at random from
{1, . . . , 2d}.

Since indices in Pt are chosen uniformly at random,
the expectations may be rewritten as

EPt
[F (x + ∆x)− F (x)] (63)

≤ P
2d

[
(∆x)T (∇F (x)) + β

2 (∆x)T (∆x)
]

(64)

+β
2

P(P−1)
2d(2d−1)

[
(∆x)TATA(∆x)− (∆x)T (∆x)

]
,

where we are overloading the notation ∆x: in Eq. (63),
∆x only has non-zero entries in elements indexed by
Pt; in Eq. (64), ∆x can have non-zero entries every-
where (set by the update rule in Eq. (4)).

The spectral radius, i.e., the largest eigenvalue, of a

matrix M may be expressed as maxz
zTMz
zT z

; see, e.g.,
Strang (?). Letting ρ be the spectral radius of ATA,
upper-bound the second-order term in Eq. (64):

EPt
[F (x + ∆x)− F (x)]

≤ P
2d

[
(∆x)T (∇F (x)) + β

2 (∆x)T (∆x)
]

(65)

+β
2

P(P−1)
2d(2d−1)

[
ρ(∆x)T (∆x)− (∆x)T (∆x)

]
= P

2d (∆x)T (∇F (x)) (66)

+β
2

P
2d

(
1 + (P−1)(ρ−1)

2d−1

)
(∆x)T (∆x)

Letting

ε = (P−1)(ρ−1)
2d−1 , (67)
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we can rewrite the right-hand side in terms of expec-
tations over j ∈ {1, . . . , 2d} to get the lemma’s result:

EPt
[F (x + ∆x)− F (x)]

≤ PEj

[
δxj(∇F (x))j + β

2 (1 + ε)(δxj)
2
]
. (68)

Note: If we let the algorithm choose a multiset, rather

than a set, of P coordinates, then we get ε = (P−1)ρ
2d ,

which gives worse scaling than the ε above. (Compare
the two when all features are uncorrelated so that ρ =
1. With a set, the ε above indicates that we can use
P = 2d and get good scaling; with a multiset, the
changed ε indicates that we can be hurt by using larger
P.)


