
Learning Large-Scale
Conditional Random Fields

Joseph K. Bradley

CMU-ML-13-100

January 2013

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Carlos Guestrin (U. of Washington, Chair)

Tom Mitchell
John Lafferty (U. of Chicago)

Andrew McCallum (U. of Massachusetts at Amherst)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2013 Joseph K. Bradley

This research was sponsored by the National Science Foundation under grant numbers IIS0644225, CNS0625518, CNS0721591,
the Office of Naval Research under grant number N000140710747, the US Army under grant number W91F0810242, and by
fellowships from the National Science Foundation and from the Intel Science and Technology Center.

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Abstract

Conditional Random Fields (CRFs) [Lafferty et al., 2001] can offer computational and
statistical advantages over generative models, yet traditional CRF parameter and structure
learning methods are often too expensive to scale up to large problems. This thesis develops
methods capable of learning CRFs for much larger problems. We do so by decomposing
learning problems into smaller, simpler subproblems. These decompositions allow us to trade
off sample complexity, computational complexity, and potential for parallelization, and we
can often optimize these trade-offs in model- or data-specific ways. The resulting methods
are theoretically motivated, are often accompanied by strong guarantees, and are effective and
highly scalable in practice.

In the first part of our work, we develop core methods for CRF parameter and structure
learning. For parameter learning, we analyze several methods and produce PAC learnabil-
ity results for certain classes of CRFs. Structured composite likelihood estimation proves
particularly successful in both theory and practice, and our results offer guidance for opti-
mizing estimator structure. For structure learning, we develop a maximum-weight spanning
tree-based method which outperforms other methods for recovering tree CRFs. In the second
part of our work, we take advantage of the growing availability of parallel platforms to speed
up regression, a key component of our CRF learning methods. Our Shotgun algorithm for
parallel regression can achieve near-linear speedups, and extensive experiments show it to be
one of the fastest methods for sparse regression.

Acknowledgments

I would first like to thank my advisor Carlos Guestrin and his research group. Carlos’
advice—on both specific research topics and more generally on how to succeed in research—
has been invaluable. Moreover, he has put together an amazing group of students who help
each other in research, presentation, writing, and life. I would especially like to thank Aapo
Kyrola and Danny Bickson for our very productive collaboration on parallel regression, as
well as Stanislav Funiak for his initial leadership in developing the codebase I used for my
research.

I would also like to thank previous advisors: Eric Xing, who oversaw my first year as
a graduate student, Ali Rahimi, who guided me through my first research internship, and
Moises Goldszmidt, who offered me excellent advice on research and my future. I would
particularly like to thank Rob Schapire, with whom I did my first major research project and
who inspires lasting loyalty in all students whom he teaches.

With respect to specific projects, I am grateful to John Lafferty and Geoff Gordon for
feedback on my composite likelihood work. Many thanks to Tom Mitchell, Mark Palatucci,
and Dean Pomerleau for helping me with the fMRI application and providing their data. I
also thank John Langford, Guy Blelloch, Joseph Gonzalez, and Yucheng Low for helpful
feedback on our parallel sparse regression work. I appreciate the time Tom Mitchell, Bryan
Kisiel, and Andrew Carlson took to discuss NELL and provide access to their data. I would
like to thank my thesis committee for feedback and advice on all of these projects.

Finally, I could not have made it through grad school without my family and friends. I
am very grateful to my parents for their support, to my brother Rob for his always-excellent
advice and attitude, and to Liza for keeping me in my place. Thank you, Frances, for your pa-
tience and support during these stressful days. And thanks to the CMU Ballroom Dance Club
members for providing a haven from computers and a place for art, exercise, and laughter.

Contents

1 Introduction 1
1.1 Probabilistic Graphical Models . 2

1.1.1 Markov Random Fields (MRFs) . 2
1.1.2 Inference . 3
1.1.3 Conditional Random Fields (CRFs) . 3

1.2 Parameter Learning . 4
1.3 Structure Learning . 5
1.4 Parallel Regression . 6
1.5 Summary and Main Contributions . 7

1.5.1 Contributions . 7

2 CRF Parameter Learning 9
2.1 Related Work . 10

2.1.1 Categories of Parameter Learning Methods . 10
2.1.2 Pseudolikelihood and Composite Likelihood . 11
2.1.3 Canonical Parameterization . 12

2.2 Learning CRF Parameters . 12
2.3 Sample Complexity Bounds . 13

2.3.1 Parameter Estimation: MLE . 13
2.3.2 Parameter Estimation: MCLE . 14
2.3.3 Loss Reduction . 15
2.3.4 Disjoint vs. Joint Optimization . 16
2.3.5 PAC Bounds . 17

2.4 Empirical Analysis of Bounds . 17
2.4.1 Setup . 17
2.4.2 Comparing Bounds . 18
2.4.3 Eigenspectra . 19

2.5 Structured Composite Likelihood . 20
2.6 The CRF Canonical Parameterization . 22

2.6.1 Background: Canonical Parameterization for MRFs 24
2.6.2 Extension to CRFs . 29
2.6.3 Extension to Arbitrary Structures . 31
2.6.4 Optimizing the Reference Assignment . 32
2.6.5 Relation to Pseudolikelihood . 33
2.6.6 Experiments . 35
2.6.7 Applications in Analysis . 36

iv

2.7 Discussion . 37
2.8 Future Work . 38

2.8.1 Pseudolikelihood and Composite Likelihood . 38
2.8.2 Canonical Parameterization . 39
2.8.3 Alternate Learning Settings . 40

3 CRF Structure Learning 42
3.1 Related Work . 43
3.2 Efficiently Recovering Tree CRFs . 43

3.2.1 A Gold Standard . 44
3.2.2 Score Decay Assumption . 45

3.3 Heuristic Scores . 46
3.3.1 Piecewise Likelihood . 46
3.3.2 Local CMI . 47
3.3.3 Decomposable Conditional Influence . 48
3.3.4 Sample Complexity . 49
3.3.5 Feature Selection . 49

3.4 Experiments . 49
3.4.1 Synthetic Models . 50
3.4.2 fMRI . 52

3.5 Discussion . 53
3.6 Future Work . 54

3.6.1 Learning Score Functions . 55
3.6.2 Learning Evidence Locality . 56
3.6.3 General Structures . 57

4 Parallel Regression 58
4.1 Introduction . 58
4.2 L1-Regularized Loss Minimization . 60

4.2.1 Sequential Stochastic Coordinate Descent (Sequential SCD) 61
4.2.2 Scalability of SCD . 62

4.3 Parallel Coordinate Descent . 62
4.3.1 Shotgun Convergence Analysis . 64
4.3.2 Theory vs. Empirical Performance . 65
4.3.3 Relaxing the Spectral Conditions on ATA . 65
4.3.4 Beyond L1 . 66

4.4 Related Work . 67
4.4.1 Coordinate vs. Full Gradient Methods . 67
4.4.2 Batch vs. Stochastic Gradient . 69
4.4.3 First-Order, Second-Order, and Accelerated Methods 70
4.4.4 Soft vs. Hard Thresholding . 70
4.4.5 Parallel Algorithms . 71

4.5 Experimental Results . 72
4.5.1 Lasso . 72
4.5.2 Sparse Logistic Regression . 75
4.5.3 Speedup of Shotgun . 77

4.6 Discussion . 78

v

4.7 Future Work . 78
4.7.1 Generalized Shotgun Algorithm . 78
4.7.2 Analysis for Other Models . 79
4.7.3 Shotgun on Graphics Processing Units (GPUs) 79
4.7.4 Shotgun in the Distributed Setting . 80

5 Conclusions 85
5.1 Model Structure and Locality . 86
5.2 Model- and Data-Specific Methods . 87
5.3 Roadmap for Learning MRFs and CRFs . 87

5.3.1 Parameter Learning Methods . 88
5.3.2 Guide for Practitioners: Parameters . 89
5.3.3 Structure Learning Methods . 91
5.3.4 Guide for Practitioners: Structure . 92

6 Future Work 93
6.1 Unified Analyses of Parameter Learning . 93
6.2 Parallel Optimization in Heterogeneous Settings . 94
6.3 Unifying Our Methods . 95

6.3.1 Parameter Learning . 96
6.3.2 Structure Learning . 96
6.3.3 Parallel Regression . 97

6.4 Machine Reading . 97
6.4.1 Never-Ending Language Learner (NELL) . 98
6.4.2 Our Proposals . 98

A CRF Parameter Learning 100
A.1 Composite Likelihood: Proofs from Ch. 2 . 100

A.1.1 CRF Losses and Derivatives . 100
A.1.2 Parameter Estimation with MLE . 102
A.1.3 Parameter Estimation with MCLE . 107
A.1.4 Disjoint Optimization . 114
A.1.5 Bounding the KL with Bounds on Parameter Estimation Error 114

A.2 Canonical Parametrization: Proofs from Sec. 2.6 . 117
A.2.1 Proof of Theorem 2.6.14 . 117
A.2.2 Proof of Theorem 2.6.16 . 118
A.2.3 Proof of Theorem 2.6.17 . 120

B Parallel Regression 121
B.1 Proofs . 121

B.1.1 Detailed Proofs: β for Squared Error and Logistic Loss 121
B.1.2 Duplicated Features . 122
B.1.3 Detailed Proof: Theorem 4.2.1 . 122
B.1.4 Detailed Proof: Theorem 4.3.1 . 124
B.1.5 Detailed Proof: Theorem 4.3.2 . 124
B.1.6 Detailed Proof: Lemma 4.3.3 . 126
B.1.7 Shotgun with a Multiset . 127

vi

B.2 Details of Algorithm Runtimes in Tab. 4.1 . 127
B.2.1 Coordinate Descent . 127
B.2.2 Iterative Shrinkage/Thresholding . 127
B.2.3 Compressed Sensing . 127
B.2.4 Homotopy . 128
B.2.5 Stochastic Gradient . 128
B.2.6 Accelerated . 129
B.2.7 Interior Point . 129
B.2.8 Distributed . 130

Bibliography 131

vii

Chapter 1

Introduction

Probabilistic Graphical Models (PGMs) are models of probability distributions whose graphical structure
encodes independence assumptions among random variables. (See, e.g., Koller and Friedman [2009].)
Techniques for learning the parameters and structure of PGMs (e.g., Chow and Liu [1968], Lafferty et al.
[2001]), as well as applications of PGMs to real-world problems (e.g., Schmidt et al. [2008], Vail et al.
[2007]), have progressed rapidly. PGMs permit modeling complex interactions between random variables,
are often intuitive and interpretable models, and provide principled frameworks for probabilistic learning
and inference.

Conditional Random Fields (CRFs), introduced by Lafferty et al. [2001], model conditional distributions
P (Y|X). CRFs offer computational and statistical advantages over analogous generative models of the
joint distribution P (Y,X). However, current parameter and structure learning methods are often too
expensive to scale to large problems, thus limiting their general utility.

In this thesis, we develop methods for scaling CRF learning to very large problems. In the first part of this
work, we develop efficient algorithms for parameter learning (Ch. 2) and structure learning (Ch. 3). The
second part of this work (Ch. 4) applies parallel computation to regression, which is an integral part of our
CRF parameter and structure learning methods.

Throughout our work, we use methods which are both motivated by theory—achieving strong theoretical
guarantees in many cases—and practical—demonstrating their efficacy and scalability on large problems.
We emphasize two major themes. The first is decomposition: our methods decompose difficult learning
problems into simpler parts by identifying locality in the computation. The second is trade-offs: most
of our methods trade off two or more of sample complexity, computational complexity, and potential for
parallelization, where a small sacrifice in one permits a large gain in another.

Thesis Statement: Structured, discriminative probabilistic models offer computational and statistical ad-
vantages over more commonly used models, but traditional learning methods are often impractical for
large problems. We can scale learning to much larger applications by using decompositions of learning
problems which trade off sample complexity, computation, and parallelization.

1

1.1 Probabilistic Graphical Models

We briefly describe Probabilistic Graphical Models (PGMs). For more details, we refer the reader to, e.g.,
Koller and Friedman [2009]. A PGM represents a probability distribution over a set of random variables
via a graphical structure and an accompanying parameterization. The structure provides an interpretable
encoding of independence relations between the random variables, and it provides a framework for com-
putation on the probability distribution. Parameters are associated with specific parts of the graphical
structure, and their combination encodes the actual probability values. This combination of interpretabil-
ity, flexibility, and sound statistical methodology provided by the PGM framework has allowed countless
successful applications, from natural language processing tasks such as part of speech tagging [Lafferty
et al., 2001] to activity recognition [Vail et al., 2007] and heart motion abnormality detection [Schmidt
et al., 2008].

Within the class of PGMs, several popular subclasses include Bayesian networks [Pearl, 1985], Markov
Random Fields (MRFs) [Kindermann and Snell, 1980], and Conditional Random Fields (CRFs) [Lafferty
et al., 2001]. Bayesian networks are directed graphical models, while MRFs and CRFs are undirected. In
this thesis, we work with undirected models.

We describe MRFs and CRFs in the next subsections. Readers familiar with MRFs and CRFs may
skip these subsections, but we remind those readers that inference poses a major computational barrier
for general models. The expense of inference—and the importance of inference for traditional learning
methods—motivates our discussion of alternative learning methods, resumed in Sec. 1.2.

1.1.1 Markov Random Fields (MRFs)

We describe MRFs, explaining terminology and notation for PGMs. MRFs are generative models, mean-
ing that they encode non-conditional probability distributions P (X), whereX is a set of random variables.
We denote individual random variables as Xi ∈ X and sets of variables as XCi ⊆ X , where Ci is a set
of indices. Uppercase Xi denotes a random variable, while lowercase xi denotes a specific value of X;
we write xi ∈ V al(Xi). The two key concepts in defining an MRF are the graphical structure and the
parameterization.

We show an example graphical structure for an MRF in Fig. 1.1. Each node in the graph corresponds to a
random variable Xi ∈ X . Each edge in the graph indicates a direct interaction between the two endpoint
variables. A random variable is conditionally independent of all other variables in the model, given values
for its neighbors; this property is called local Markov independence. A variable’s neighbors are referred
to as the variable’s Markov blanket. In the simple model in Fig. 1.1, if we observe whether the student has
been losing sleep (X6), then the probability that the student has an upcoming paper deadline (X2) will not
change if we check whether the student has bags under his eyes (X1). We denote the set of neighbors of
variable Xi as XNi and the neighbors of a set of variables XC as XNC .

The graphical structure of an MRF corresponds to its parameterization. An MRF may be written as a
product of factors ψj :

P (X) =
1

Z

∏
j

ψj(XCj), (1.2)

where each factor is a function ψj : V al(XCj)→ R+ (where R+ denotes non-negative real values). We
discuss specific parameterizations of ψj in later chapters. XCj is called the domain of factor ψj , and each

2

X2:	 deadline?	

X1:	 bags	 under	 eyes?	
X3:	 sick?	

X4:	 losing	 hair?	

X5:	 overea5ng?	 X6:	 losing	 sleep?	

P (X) = 1
Z ·ψ1,6(X1, X6)·ψ1,3(X1, X3)·ψ2,6(X2, X6)·ψ3,6(X3, X6)·ψ2,5(X2, X5)·ψ2,4(X2, X4)·ψ3,4(X3, X4)

(1.1)

Figure 1.1: Example MRF: Modeling a graduate student’s health. Random variables (nodes) Xi

represent real-world measurements (boolean-valued in this model). An edge between two variablesXi, Xj

indicates a direct interaction, i.e., the presence of a factor ψ(Xi, Xj) in the model. The graphical structure
of the model defines statistical assumptions and the computation needed for inference and learning.

Xi ∈ XCj is called an argument of the factor. We say that Xi participates in factor ψj . Z is called the
partition function (a.k.a. normalization constant), and it is chosen s.t. P (X) is a probability distribution
which sums to 1:

Z =
∑

x∈V al(X)

∏
j

ψj(XCj). (1.3)

The factor domains XCj determine the graphical structure of an MRF: a variable Xi shares an edge with
a variable Xk if and only if i, k ∈ Cj for some j. In Fig. 1.1, factor psi1,6 with domain {X1, X6}
corresponds to the edge between X1 and X6 in the graphical structure. The MRF in Fig. 1.1 has only
binary factors (with two arguments per factor). A factor with more than two arguments corresponds to a
hyperedge in the graphical structure.

1.1.2 Inference

Given an MRF’s factors {ψj}, we must perform inference in order to compute probabilities such as P (X),
P (XA), or P (XA|xB). For P (X), inference means computing the partition function Z. For P (XA),
inference means summing out all variables not in XA (summing over the values of all variables X \XA).
For P (XA|xB), we must condition our model on the values xB: we instantiate XB = xB in our model,
sum out all variables not in XA ∪ XB , and then compute the partition function for the resulting model
over XA.

In general, exact inference in MRFs is #P-hard, and approximate inference is NP-hard [Roth, 1996].
However, for certain classes of MRFs, inference can be done efficiently. Perhaps the most popular class
of MRFs which permit tractable inference are low-treewidth models. Intuitively, the treewidth of a model
measures how tree-like the structure is: a tree has treewidth 1 and permits efficient inference, while a fully
connected structure has treewidth |X | − 1 and does not permit tractable inference.

1.1.3 Conditional Random Fields (CRFs)

This thesis focuses on Conditional Random Fields (CRFs) [Lafferty et al., 2001], which generalize MRFs.
CRFs model conditional probability distributions P (Y|X). We call Y the set of output variables and X
the set of input variables.

3

Y2:	 deadline?	

X1:	 bags	 under	 eyes?	
X2:	 sick?	

X3:	 losing	 hair?	

Y3:	 overea5ng?	 Y1:	 losing	 sleep?	

P (X) = 1
Z(X) · ψ(Y1, X1) · ψ(Y1, X2) · ψ(Y1, Y2) · ψ(Y2, X3) · ψ(Y2, Y3) (1.5)

Figure 1.2: Example CRF: Modeling a graduate student’s health. Compare with the MRF in Fig. 1.1:
in this CRF, the output variables Y and input variables X together form the variables in the MRF. Condi-
tioning on X removes the structure over X from the model, simplifying the representation.

Like MRFs, CRFs may be written as a product of factors:

P (Y|X) =
1

Z(X)

∏
i

ψj(YCj , XDj), (1.4)

where a factor ψj can be a function of both output and input variables. For CRFs, we use Cj to index
domains of output variables and Dj to index domains of input variables. Note that the CRF partition
function Z(X) is a function of X . Just as we had to recompute Z for MRFs P (X) after conditioning on
a subset of X , we must compute Z(x) for CRFs in order to compute P (Y|X = x).

The graphical structure for CRFs is defined w.r.t. only the output variables. I.e., the statistical assumptions
implicit in a CRF are made primarily w.r.t. the output variables, and fewer assumptions need to be made
about the input variables. One way to understand this benefit is as follows: Given an MRF for P (Y,X)
(the joint distribution) written as a product of factors, we can express a CRF for P (Y|X) as a product of
the same factors, excluding those factors which do not have Y variables in their domains. Thus, CRFs
avoid modeling a distribution over X . Moreover, the graphical structure is simplified to be over Y only,
not X . Even if P (Y,X) is high-treewidth, the conditional P (Y|X) may not be. (If P (Y,X) is low-
treewidth, so is P (Y|X).) We give an example of a CRF in Fig. 1.2, in which Y ∪ X are the variables in
the example MRF in Fig. 1.1.

Since CRFs generalize MRFs, the hardness results for MRF inference apply to CRFs as well. However,
a CRF modeling P (Y|X) can permit tractable inference when a corresponding MRF modeling P (Y,X)
requires intractable inference, for the graphical structure of the CRF could be much simpler than that of
the MRF. On the other hand, the dependence of the partition function Z(X) on the values of X can make
traditional parameter learning for CRFs very expensive, as discussed in Sec. 1.2.

1.2 Parameter Learning

Parameter learning refers to choosing the values of the factors ψj(YCj , XDj). Perhaps the most tradi-
tional learning method is maximum-likelihood estimation (MLE), which optimizes the (conditional) log
likelihood of the data. Optimizing via an iterative gradient-based algorithm requires running inference on
every iteration in order to compute the objective and/or its gradient must be computed. Thus, this learning
approach is tractable for low-treewidth structures (e.g., Lafferty et al. [2001]) but not for general models.

4

CRFs additionally complicate learning since inference must be run separately for every training example
(since the partition function depends on X).

In Ch. 2, we approach parameter learning with the goal of PAC-style learning for high-treewidth models.
The Probably Approximately Correct (PAC) framework, proposed by Valiant [1984], sets a standard for
learnability guarantees: a model is PAC-learnable if there exists an algorithm which achieves high accu-
racy (approximately correct) with high probability, with the additional constraint of using a polynomial
amount of computation (and thus polynomially many examples).

Most previous applications of learning MRFs and CRFs on high-treewidth models used either approx-
imate objectives (rather than the MLE objective) or approximate inference to make learning tractable.
Some empirically successful approximations include pseudolikelihood [Besag, 1975], composite likeli-
hood [Lindsay, 1988], piecewise likelihood [Sutton and McCallum, 2005], and contrastive divergence
[Hinton, 2002]. Unfortunately, most such approximations did not come with PAC-style guarantees on the
quality of the resulting model, though some methods worked well empirically.

To our knowledge, before our work, the only previous work proving PAC-style learnability for any class
of high-treewidth models was the canonical parameterization of Abbeel et al. [2006]. Their method re-
parameterizes the model into a set of local factors which may be estimated separately, without intractable
inference. In Sec. 2.6, we show how to extend this method from MRFs to CRFs and derive several im-
provements to the method. However, we also demonstrate that the canonical parameterization essentially
reduces to pseudolikelihood, which often performs better empirically. Nevertheless, we argue that the
canonical parameterization may yet prove useful for theoretical analysis, even if it is not the most practi-
cal algorithm.

In Ch. 2, we primarily discuss pseudolikelihood and composite likelihood, which decompose the learning
problem (over all variables) into smaller problems (over small sets of variables). Before our work, these
methods were often labeled as heuristics since they lacked finite-sample quality guarantees. We are able
to prove that these methods allow PAC-style learnability for an even more general class of models than the
canonical parameterization allows. Our theoretical results reveal how pseudolikelihood makes learning
tractable by trading off slightly larger sample complexity for much lower computational complexity, with
the side benefit of much easier parallelization. Composite likelihood, which generalizes pseudolikelihood
and the full likelihood (MLE) and many intermediate objectives, opens up a wide range of possible trade-
offs; most importantly, we are able to tailor composite likelihood to the model and the dataset to optimize
the trade-off between sample complexity, computational complexity, and potential for parallelism. This
structured composite likelihood approach reveals many new avenues for research.

1.3 Structure Learning

Our work on parameter learning assumes that the structure of the model is pre-specified. Structure learn-
ing refers to selecting outputs YCj for each factor, thus choosing the graphical structure over Y represent-
ing conditional independence relations in the distribution. We distinguish structure learning from feature
selection, which refers to selecting inputs XDj for each factor, i.e., inputs directly relevant to YCj .

Significant work has been done on structure learning for generative models. While Srebro [2003] showed
that MRF structure learning is NP-hard in general, some methods can provably learn certain classes of
MRFs. Tree-structured MRFs may be learned using the famous Chow-Liu algorithm [Chow and Liu,
1968]. More general low-treewidth models may be learned using the constraint-based method proposed

5

by Chechetka and Guestrin [2007]. Ravikumar et al. [2008, 2010] use L1 regularization to recover sparse
structures, with theoretical guarantees for some classes of models. In addition, heuristic methods such as
local search (e.g., Teyssier and Koller [2005]) can perform well in practice.

However, few papers address CRF structure learning. Moreover, although expert knowledge can some-
times dictate structure and features, conditional independence structure in CRFs can be much less intuitive
than the independence structure in MRFs. There are few learnability results for CRF structure. Learn-
ing is known to be hard in general; this result follows from the hardness results for MRFs from Srebro
[2003]. The results on learning Ising MRF structures from Ravikumar et al. [2010] imply learnability for
some classes of Ising CRFs. Nevertheless, several papers have achieved empirical success using heuristic
methods, such as greedy factor selection [Torralba et al., 2004], block-`1-regularized pseudolikelihood
[Schmidt et al., 2008], and approximate objectives [Shahaf et al., 2009].

In Ch. 3, we discuss methods for learning tree structures, which are particularly useful since they permit
tractable exact inference. Given the success of the Chow-Liu algorithm in learning tree MRFs, we use the
same algorithmic approach for CRFs: weight each possible edge, and choose a maximum-weight spanning
tree. The approach is very computationally efficient, and the decomposition into disjoint computation of
edge weights permits simple parallelization. Unfortunately, the obvious generalization of the Chow-Liu
algorithm to CRFs quickly breaks down as the number of input variables grows, for the edge weights,
conditional mutual information (CMI), become difficult to estimate.

In Ch. 3, we propose a class of edge weights generalizing CMI. Although we can prove a negative result
showing that no single member of the class of edge weights is sufficient for recovering all tree CRFs,
we demonstrate that two members of the class significantly outperform CMI in practice. In Sec. 3.6, we
outline potential algorithmic improvements which might sidestep our negative result, as well as ideas for
performing feature selection jointly with structure learning.

1.4 Parallel Regression

So far, we have introduced our work on core learning methods for CRF parameters and structure. We
now discuss work on scaling a core component of those methods: regression, or estimating one variable
(or a small set of variables) given the values of other variables (called covariates). In parameter learning,
regression is a key step in pseudolikelihood (Ch. 2) and in the canonical parameterization (Sec. 2.6).
In structure learning, regression is used to estimate edge weights in our method (Ch. 3) and in many
neighborhood estimation methods (e.g., Ravikumar et al. [2008, 2010]). Our work scales regression using
parallel computation.

For many years, people have relied on exponential growth in processor speeds to provide ever-increasing
scalability for their algorithms. Recently, processor speeds have essentially stopped increasing, and scal-
ability via hardware must instead come from taking advantage of parallel computing. Multicore and
distributed computing systems have become widely available, and interest in parallel algorithms—and
increasingly in parallel machine learning—has followed suit.

In Ch. 4, we examine parallel optimization for sparse (L1-regularized) regression. Sparse regression is
of particular interest since sparsity-inducing regularization allows regression methods to scale well w.r.t.
the number of irrelevant covariates [Ng, 2004]. As we argue, many methods with obvious parallelization
schemes are relatively inefficient for sparse regression.

6

Parameter	 Learning	
	 Pseudo-‐	 and	
composite	 likelihood	

	 Canonical	
parameteriza8on	

Regression	
	 Parallel	 coordinate	
descent	

Structure	 Learning	
	 Generalized	 Chow-‐Liu	

solve	
via	

Figure 1.3: Thesis overview: CRF learning problems and our solutions. Learning CRFs requires
learning parameters and structure. For parameters, we study three methods: pseudolikelihood, composite
likelihood, and the canonical parameterization. For structure, our method is a generalized Chow-Liu
algorithm [Chow and Liu, 1968]. All of our parameter and structure learning methods use regression as a
key component. For regression, our method is parallel coordinate descent.

We examine coordinate descent, which optimizes one parameter while holding all others fixed. Coordinate
descent is known to be one of the fastest existing methods for sparse regression, yet it seems inherently
sequential at first glance. We prove the opposite: a simple parallel version of coordinate descent, dubbed
Shotgun [Bradley et al., 2011], achieves near-linear speedups up to a data-dependent limit. Moreover,
we demonstrate the algorithm’s practicality through extensive empirical tests which show Shotgun to be
one of the fastest and most robust methods for sparse regression.

Shotgun’s success is due to data-specific locality in the optimization problem which limits interactions
between coordinate updates. This locality allows the algorithm to decompose the update of a set of vari-
ables into independent updates. While this simplification can lead to slightly higher total computational
cost, it permits much greater parallelism. While our current work is for multicore systems, we propose ex-
tensions of our ideas to distributed systems, in which communication becomes a major bottleneck.

1.5 Summary and Main Contributions

We study three problems: CRF parameter learning, CRF structure learning, and regression. We detail these
problems and our solutions in Fig. 1.3, showing how they relate. Our solutions are guided by the main
themes of this thesis: decomposing problems and optimizing trade-offs to make learning more scalable.
We showcase our work on CRF parameter learning in Fig. 1.4 to illustrate these themes.

1.5.1 Contributions

We summarize our main contributions below and in Fig. 1.5. For each part of CRF learning—parameter
learning, structure learning, and regression—we make contributions to both theory and practice.

Parameter learning: We prove finite sample complexity bounds for learning the parameters of general
MRFs and CRFs by using MLE, pseudolikelihood, and composite likelihood. Our bounds imply PAC-
style learnability of certain general classes of MRFs and CRFs, and they provide theoretical justification
for methods previously considered to be heuristics. We also improve the canonical parameterization of
Abbeel et al. [2006] and relate it to pseudolikelihood. Our analysis gives practical guidance for choosing

7

Tradi&onal	
learning	 (MLE)	 Op&mal	 High	

Pseudolikelihood	

Difficult	

High	 Low	 Easy	

Composite	
Likelihood	 Low	 Low	 Easy	

Sample	
complexity	

Computa&onal	
complexity	

Parallel	
op&miza&on	

Decomposi)on	 Trade-‐offs	

Figure 1.4: Thesis themes: decomposition and trade-offs. Two of our parameter learning methods,
pseudolikelihood and composite likelihood, showcase the themes in this thesis. We decompose the prob-
lem of parameter learning by splitting the optimization over the full model (in MLE) into a set of smaller
sub-problems. This allows us to trade some sample complexity for improved computational complexity
and parallelism. Composite likelihood lets us optimize this trade-off w.r.t. our model and data.

Theory Practice
Parameter Sample complexity bounds; Guidance for choosing problem-specific
Learning Improved canonical parameterization composite likelihood estimators
Structure Analysis of issues in Scalable method for
Learning generalizing Chow-Liu learning tree CRFs
Parallel Proof of near-linear speedups for Shotgun, one of the fastest multicore
Regression parallel coordinate descent algorithms for sparse regression

Figure 1.5: Main contributions in this thesis

problem-specific estimators to optimize trade-offs between sample complexity, computation, and paral-
lelism.

Structure learning: We study generalizing the Chow-Liu algorithm [Chow and Liu, 1968] to CRFs and
provide a deeper understanding of problems which arise. We propose a scalable heuristic method for
learning tree structures for CRFs which works well in practice.

Parallel regression: We prove convergence bounds for a simple parallel version of coordinate descent,
showing that it can achieve near-linear speedups up to a problem-dependent limit. In extensive experi-
ments, we demonstrate our Shotgun algorithm to be one of the fastest multicore algorithms for sparse
regression.

8

Chapter 2

CRF Parameter Learning

As discussed in Sec. 1.2, traditional parameter learning via maximum-likelihood estimation (MLE) for
Markov Randoms Fields (MRFs) and Conditional Random Fields (CRFs) is very expensive due to the cost
of running inference. For high treewidth models, inference is intractable, so MLE is intractable as well.
When approximate inference is used, MLE generally loses its statistical guarantees. Some methods, such
as maximum pseudolikelihood estimation (MPLE) [Besag, 1975], estimate parameters without intractable
inference (i.e., using only tractable probabilistic queries) but—before our work—only had asymptotic
guarantees for general models [Liang and Jordan, 2008].

In this section, we discuss scaling up parameter learning to much larger problems using structured max-
imum composite likelihood estimation (MCLE). MCLE generalizes both MLE and MPLE and allows a
much more flexible choice of estimator structure. MCLE was proposed by Lindsay [1988]. Our primary
contributions to the method are an improved analysis and a better understanding of estimator structure,
which permits more effective choices of composite likelihood estimators in practice.

Our analysis of MCLE gives the first strong finite sample guarantees for learning the parameters of general
CRFs (which generalize MRFs). We prove learning bounds for MCLE w.r.t. the parameter estimation
error and log loss when the target distribution is in our model class. In the large sample limit, our bounds
match existing asymptotic normality results for MCLE [Liang and Jordan, 2008].

For certain classes of models, our bounds fall within the probably approximately correct (PAC) framework
[Valiant, 1984]: we can achieve high accuracy with polynomial sample and computational complexity. As
we will see, a problem-dependent factor in our bounds determines whether the sample complexity of
learning grows slowly as model size increases (permitting PAC learning) or grows quickly (preventing
PAC learning).

We include a detailed empirical analysis of our theoretical results. We show that our bounds accurately
capture MCLE behavior in terms of a few problem properties, and we study how those properties vary
with model structure and parameters. Finally, we improve upon the traditional use of MCLE by showing
that careful choice of the MCLE loss structure can provide computationally efficient estimators with better
statistical properties and empirical performance.

To our knowledge, only one other method for learning parameters of high-treewidth discrete models has
PAC guarantees: the canonical parameterization of Abbeel et al. [2006], which re-factorizes the model
into factors which may be estimated separately. In Sec. 2.6, we present a detailed analysis of their method,

9

deriving improvements both to the learning algorithm and its bounds. However, in Sec. 2.6.5, we argue
that their method is very similar to MPLE and that MPLE (and MCLE) should perform better in prac-
tice.

Our main contributions in this chapter may be summarized as follows:

• Finite sample complexity bounds for general MRFs and CRFs, using MPLE and MCLE

PAC learnability for certain classes of high-treewidth models

• Empirical analysis of bounds on various models, comparing MLE, MPLE, and MCLE

• Guidelines for choosing MCLE structures to optimize trade-offs between sample complexity, com-
putation, and parallelism

• Analysis of the canonical parameterization of Abbeel et al. [2006]

Improvements to the algorithm and bounds

Better understanding of the relation with MPLE

Our work on composite likelihood was initially presented in Bradley and Guestrin [2012].

2.1 Related Work

We first discuss general categories of parameter learning methods to frame our approaches. We then
discuss work closely related to our work on MPLE and MCLE. Finally, we mention the few pieces of
work related to the the canonical parameterization.

2.1.1 Categories of Parameter Learning Methods

We mention several broad categories of parameter learning methods. As discussed in Sec. 1.2, traditional
MLE training (e.g., Lafferty et al. [2001]) is optimally statistically efficient but computationally intractable
for many models. Batch MLE training may be sped up by using stochastic gradient estimates, where the
gradient is estimated using a single random training example or a mini-batch [Vishwanathan et al., 2006].
However, the use of stochastic gradient estimates does not affect the intractability of inference.

Many methods avoid intractable inference by modifying the likelihood objective. One such class of meth-
ods compares ratios of probabilities of subsets of variables in the model; in these ratios, the two copies of
the partition function cancel out, eliminating the need for intractable inference. Pseudolikelihood [Besag,
1975] and composite likelihood [Lindsay, 1988], which we analyze in this chapter, belong to this class.
Before our work, these two methods were known to be consistent (e.g., Liang and Jordan [2008]) and
empirically useful (e.g., Schmidt et al. [2008], Sutton and McCallum [2005, 2007]). We are able to prove
that both methods come with finite sample guarantees for many models as well. Another member of this
class is ratio matching [Hyvärinen, 2007], which is consistent but not always convex. (Pseudolikelihood
and composite likelihood objectives are convex.)

Several other alternative methods for modifying the likelihood objective exist. Piecewise likelihood and
piecewise pseudolikelihood [Sutton and McCallum, 2005, 2007], which train each factor separately, are
not consistent for all models, but they have been shown to work well in practice in the domain of natural

10

language processing. Score matching [Hyvärinen, 2005] is consistent with perfect numerical optimization,
but the objective is not always convex.

Another class of methods replace intractable inference with approximate inference which does not come
with an a priori quality guarantee. Common methods for approximate inference include Gibbs sampling
[Geman and Geman, 1984], which lacks finite-time guarantees on the approximation accuracy of inference
results, and variational inference (e.g., Wainwright [2006]), which sometimes includes problem-specific
guarantees computable at runtime. Hybrid methods also exist: contrastive divergence [Hinton, 2002]
combines Gibbs sampling with stochastic gradient estimates and an alternative objective function.

The (tractable) methods listed above are often empirically successful but, to our knowledge, do not come
with PAC-style learning guarantees for general MRFs and CRFs. Before our work, the one exception
was the canonical parameterization of Abbeel et al. [2006], which we discuss more in Sec. 2.6. Abbeel
et al. [2006] used this method to prove PAC-style bounds for MRFs with discrete variables representable
as bounded-degree factor graphs. In Sec. 2.6, we generalize their work to CRFs and derive several im-
provements. Yet we also show that their algorithm is very similar to pseudolikelihood and is arguably less
practical, though perhaps still useful for theoretical analysis.

2.1.2 Pseudolikelihood and Composite Likelihood

Several authors have compared MLE with MPLE and MCLE. Many works have shown MPLE to be
empirically successful (c.f., Schmidt et al. [2008], Sutton and McCallum [2005, 2007]), achieving lower
accuracy but requiring less computation than MLE. Theoretical analyses have predicted such behavior
(c.f., Gidas [1986], Hyvärinen [2006], Liang and Jordan [2008]), but only in the asymptotic setting.

Much of this work is on structured MCLE, which uses composite likelihood components which are struc-
tured according to the model being learned and can therefore be quite large while still maintaining tractable
inference. Previous work generally used small components, often not chosen according to the model struc-
ture. For example, Dillon and Lebanon [2010] tested MCLE components composed of all subsets of two
to four variables, which gave better empirical performance than MPLE. One notable exception was Asun-
cion et al. [2010], who discussed the benefits of using of small tree-structured components for MCLE
(though they used the components for sampling-based inference, not a deterministic estimator).

MCLE has also been generalized to stochastic composite likelihood [Dillon and Lebanon, 2010], which
stochastically combines computationally cheap estimators such as MPLE with expensive ones such as
MLE. Rather than using the same estimator for each training example, an estimator is selected randomly,
thus decreasing the number of times expensive estimators are used. This idea could be readily combined
with our ideas for structured estimators.

Part of our discussion involves handling inconsistent parameter estimates from disjoint pseudolikelihood
optimization (Sec. 2.3.4). Lowd [2012] discuss similar issues in the context of translating dependency
networks to MRF representations. Dependency networks represent a distribution as a set of conditional
distributions for each variable: P (Xi|XNi); thus, learning a dependency network is identical to pseudo-
likelihood with disjoint optimization. Lowd [2012] present an in-depth discussion of handling inconsistent
estimates using averaging schemes, with an emphasis on models over Boolean variables.

Our analysis is most closely related to that of Ravikumar et al. [2010], who proved sample complexity
bounds for parameter estimation error in regression problems Yi ∼ X in Ising models. We adapt their
analysis to handle general log linear CRFs, structured losses, and shared parameters (Sec. 2.3.4), and

11

we use the resulting bounds on parameter estimation error to prove bounds on the log loss. Our bounds
resemble asymptotic normality results such as those of Liang and Jordan [2008] and Dillon and Lebanon
[2010].

2.1.3 Canonical Parameterization

To our knowledge, the canonical parametrization initially proposed by Abbeel et al. [2006] has not been
studied by many later works. The one exception was Roy et al. [2009], who derived a significant im-
provement which we discuss in Sec. 2.6.1. Their improvement was key in our observations on how the
canonical parameterization relates to MPLE.

2.2 Learning CRF Parameters

We define notation here, though a few equations are replicated in Sec. 1.2. We write general log-linear
CRFs in the form

Pθ(Y |X) =
1

Z(X; θ)
exp

(
θTφ(Y,X)

)
, (2.1)

where Y and X are sets of output and input variables, respectively. Y and X may be discrete or real-
valued. θ is an r-vector of parameters; φ is an r-vector of features which are functions of Y and X with
bounded range; and Z is the partition function. Note that an MRF P (Y) would be represented by letting
X = ∅.

The feature vector φ implicitly defines the structure of the CRF: each element φt is a function of some
subset of Y,X and defines edges in the CRF graph connecting its arguments. We call each θTt φt(Y,X) a
factor.

In parameter learning, our goal is to estimate θ from a set of i.i.d. samples {y(i), x(i)} from a target
distribution P (X)Pθ∗(Y |X), where θ∗ are the target parameters. Note we assume Pθ∗(Y |X) is in our
model family in Eq. (2.1). We learn parameters by minimizing a loss ˆ̀, which is a function of the samples
and θ, plus a regularization term:

min
θ

ˆ̀(θ) + λ‖θ‖p. (2.2)

Above, λ ≥ 0 is a regularization parameter, and p ∈ {1, 2} specifies the L1 or L2 norm. We write ˆ̀ for
the loss computed w.r.t. the n training samples and ` for the loss w.r.t. the target distribution.

The choice of loss function defines the estimator. MLE minimizes the log loss:

`L(θ) = EP (X)Pθ∗ (Y |X) [− logPθ(Y |X)] . (2.3)

MPLE [Besag, 1975] minimizes the pseudolikelihood loss, which is the sum over variables Yi of their
likelihoods conditioned on neighbors in Y\i

.
= Y \ {Yi} and in X:

`PL(θ) = EP (X)Pθ∗ (Y |X)

[
−
∑
i

logPθ(Yi|Y\i, X)

]
. (2.4)

In general, computing the conditional probabilities P (A|·) in these losses takes time exponential in |A|.
Thus, computing the log loss can take time exponential in |Y |, while computing the pseudolikelihood loss
takes time linear in |Y |.

12

MCLE [Lindsay, 1988] minimizes the composite likelihood loss:

`CL(θ) = EP (X)Pθ∗ (Y |X)

[
−
∑
i

logPθ(YAi |Y\Ai , X)

]
, (2.5)

where YAi is a set of variables defining the ith likelihood component and Y\Ai
.
= Y \ YAi . With a single

component YAi = Y , MCLE reduces to MLE; if each component is a single variable YAi = {Yi},
MCLE reduces to MPLE. MCLE thus permits a range of losses between MLE and MPLE with varying
computational complexity. We discuss the choice of likelihood components in Sec. 2.5.

If a feature φt is a function of Yi ∈ YAi , then we say φt and θt participate in component Ai, and we write
θt ∈ θAi . Also, some works permit more general components conditioned on YB ⊆ Y\Ai . We restrict
YB = Y\Ai for simplicity, and our analysis only requires that the set of components A .

= {Ai} forms a
consistent estimator (i.e., an estimator which recovers the target parameters with probability approaching
1 as the training set size approaches infinity).

2.3 Sample Complexity Bounds

This section presents our main theoretical results: finite sample complexity bounds for learning parameters
for general CRFs using MCLE. We give bounds in terms of parameter estimation error, which we then use
to bound log loss. The appendix has detailed proofs of all results.

We list some of our sample complexity bounds as “PAC-style” bounds since they take the form of PAC
bounds: we can achieve low error with high probability given a certain number of training examples.
However, each bound includes a factor which can increase with model size, depending on the model
structure. We discuss this issue further in Sec. 2.3.5. Also, the PAC framework requires learning to be
polytime. MLE and MCLE may or may not be polytime; as discussed in Sec. 2.5, we restrict ourselves to
tree-structured MCLE estimators, which permit polytime inference.

2.3.1 Parameter Estimation: MLE

For comparison, we first give bounds for MLE. Our bounds are written in terms of a few model properties:
r (the number of parameters), φmax

.
= maxt,y,x φt(y, x) (the maximum magnitude of any feature vector

element), and Cmin (a lower bound on Λmin
(
∇2`L(θ∗)

)
, the minimum eigenvalue of the Hessian of

the log loss w.r.t. the target distribution).1 Bounding the eigenvalues away from 0 prevents variable
interactions from being deterministic.

Our first theorem is a PAC-style bound for MLE w.r.t. parameter estimation error.

Theorem 2.3.1. (MLE PAC-style bound) Assume a lower bound on the minimum eigenvalue of the log
loss: Λmin

(
∇2`L(θ∗)

)
≥ Cmin > 0. Suppose we learn parameters θ̂ by minimizing Eq. (2.2) using the

log loss `L w.r.t. n > 1 i.i.d. samples, using regularization λ =
C2
min

26r2φ3max
n−ξ/2, where ξ ∈ (0, 1). Then θ̂

will be close to the target parameter vector θ∗:

‖θ̂ − θ∗‖1 ≤ Cmin
4rφ3max

n−ξ/2 (2.6)

1If the features are overcomplete, then r is the intrinsic dimensionality of the feature space, computed as the number of
non-zero eigenvalues of the log loss Hessian. Cmin is a lower bound on the non-zero eigenvalues.

13

with probability at least
1− 2r(r + 1) exp

(
− C4

min
213r4φ8max

n1−ξ
)
. (2.7)

In Theorem 2.3.1, the constant ξ trades off the convergence rate of the parameters with the probability of
success. As n −→ ∞, we may let ξ −→ 1 while keeping the probability of success high; as ξ −→ 1,
the convergence rate approaches n−1/2, the asymptotic rate [Liang and Jordan, 2008]. The next corollary
eliminates ξ by converting the PAC-style bound into a sample complexity bound.

Corollary 2.3.2. (MLE sample complexity) Given the assumptions from Theorem 2.3.1, to estimate the
parameters within L1 error ε with probability at least 1− δ, it suffices to have a training set of size

n ≥ 29φ2max
C2
min

1
(ε/r)2

log 2r(r+1)
δ . (2.8)

This sample complexity result implies that parameters are easier to learn when the minimum eigenvalue
bound Cmin is large; i.e., estimators with large Cmin are more statistically efficient.2 Asymptotic results
(e.g., Liang and Jordan [2008], Ravikumar et al. [2010]) have related statistical efficiency to the loss’
Hessian. The above bound is expressed in terms of ε/r, the error for the full parameter vector normalized
by the number of parameters r; keeping this normalized parameter error ε/r constant, the bound increases
only logarithmically with r. Also, note that changing φmax essentially rescales parameters.

2.3.2 Parameter Estimation: MCLE

We now present bounds generalized to MCLE. Since MCLE can use multiple likelihood components Ai,
our bounds contain additional quantities. Mmax denotes the maximum number of components in which
any feature participates. The bound Cmin applies to all Ai ∈ A. We also write ρmin as a lower bound
on the sum of minimum eigenvalues for likelihood components (w.r.t. the target distribution) in which
any parameter θt participates: ρmin

.
= mint ρt, where ρt ≤

∑
i : θt∈θAi

Λmin(∇2[`CL(θ∗)]Ai). Here,
[`CL(θ∗)]Ai denotes the loss term contributed by component Ai.

Intuitively, ρmin generalizes Cmin from MLE to MCLE. Recall that MLE uses a single likelihood compo-
nent to estimate θ, and the minimum eigenvalue of the component’s Hessian (Cmin) affects the statistical
efficiency of MLE. In MCLE, each parameter may be estimated using multiple likelihood components,
and the sum of the minimum eigenvalues for those components (ρmin) affects the statistical efficiency of
MCLE.

We can now present our PAC-style bound for MCLE.

Theorem 2.3.3. (MCLE PAC-style bound) Assume we use a consistent MCLE estimator `CL. Assume
bounds mini Λmin

(
∇2[`CL(θ∗)]Ai

)
≥ Cmin > 0, and let ρmin = mint ρt. Suppose we learn parameters

θ̂ by minimizing Eq. (2.2) using the MCLE loss `CL w.r.t. n > 1 i.i.d. samples, using regularization
λ =

C2
min

26r2Mmaxφ3max
n−ξ/2, where ξ ∈ (0, 1). Then θ̂ will be close to the target parameter vector θ∗:

‖θ̂ − θ∗‖1 ≤ ρmin
4rMmaxφ3max

n−ξ/2 (2.9)

with probability at least

1− 2r(|A|r + 1) exp
(
− C4

min
213r4M4

maxφ
8
max

n1−ξ
)
. (2.10)

2We use “statistical efficiency” w.r.t. finite sample sizes, borrowing the term from asymptotic analysis.

14

If the number of likelihood components is

|A| ≤ 1
2r2

(2r)

[
28C2

minM
2
max

ρ2min

]
, (2.11)

then Eq. (2.9) holds with probability at least

1− 4r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
. (2.12)

We can see that using multiple likelihood components can worsen the bound by increasing Mmax and |A|
but can also improve the bound by increasing ρmin. Sec. 2.5 shows how careful choices of components
can improve this trade-off. We include the special condition Eq. (2.11) since it permits us to replace Cmin
with ρmin in the probability bound, which will later prove helpful in explaining the behavior of MCLE
with overlapping components. Eq. (2.11) is a reasonable requirement in many cases, and it holds for our
empirical tests.

The following corollary converts Theorem 2.3.3 into a sample complexity bound.

Corollary 2.3.4. (MCLE sample complexity) Given the assumptions from Theorem 2.3.3, to estimate the
parameters within L1 error ε with probability at least 1− δ, it suffices to have a training set of size

n ≥ 29M2
maxφ

2
maxρ

2
min

C4
min

1
(ε/r)2

log 2r(|A|r+1)
δ . (2.13)

If Eq. (2.11) holds, then it suffices to have

n ≥ 29M2
maxφ

2
max

ρ2min

1
(ε/r)2

log 4r
δ . (2.14)

Theorem 2.3.3 generalizes Theorem 2.3.1: with MLE, ρmin = Cmin, Mmax = 1, and |A| = 1. For
MPLE, we have ρmin ≥ Cmin, Mmax = 2, and |A| = |Y |. Thus, MLE’s statistical guarantees are
stronger than those for MPLE and MCLE only up to problem-dependent constants. All three estimators’
sample complexity bounds have the same dependence (up to log terms) on the problem properties r and
φmax, the desired error ε, and the probability of failure δ.

The estimators mainly differ in their spectral properties. Recall that ρmin generalizes Cmin. If each
parameter θt participates in an equal number of MCLE components, then we may replace Mmax/ρmin
with the minimum over parameters θt of the average of minimum eigenvalues for components in which θt
participates: ρmin

.
= mint avgi : θt∈θAi

Λmin(∇2[`CL(θ∗)]Ai). This substitution makes our MCLE sample
complexity bound in Eq. (2.14) identical (up to log factors) to our MLE bound in Eq. (2.8), with ρmin
substituted for Cmin. I.e., MCLE averages the effects of its various components. We show in Sec. 2.5 how
this averaging can mitigate the negative impact of “bad” components (with small eigenvalues).

2.3.3 Loss Reduction

Thus far, we have only given bounds on parameter estimation error. We now show that a bound on
parameter error may be used to bound the log loss.

15

Theorem 2.3.5. (Log loss, given parameter error) Let Λmax be the largest eigenvalue of the log loss
Hessian at θ∗. If the parameter estimation error is small:

‖θ − θ∗‖1 ≤
−Λmax+

√
Λ2
max+4rφ4max

4φ3max
, (2.15)

the log loss converges quadratically in the error:

`L(θ) ≤ `L(θ∗) +
(

Λmax
2 + φ2

max

)
‖θ − θ∗‖21. (2.16)

Otherwise, the log loss converges linearly in the error:

`L(θ) ≤ `L(θ∗) + φmax‖θ − θ∗‖1. (2.17)

This theorem describes two well-known convergence regimes: linear far from the optimum and quadratic
close to the optimum. In the large sample limit, our results indicate that the log loss of the MLE and MCLE
estimates converge at a rate approaching n−1, matching the asymptotic results of Liang and Jordan [2008].
To see this, let ξ −→ 1 in Theorem 2.3.1 and Theorem 2.3.3, and note that we enter the quadratic regime
in Theorem 2.3.5.

Sample complexity bounds for MLE and MCLE w.r.t. log loss may be computed by combining Corol-
lary 2.3.2 and Corollary 2.3.4 with Theorem 2.3.5. For lack of space, we relegate these bounds to the
appendix.

2.3.4 Disjoint vs. Joint Optimization

In Sec. 2.3.2, we analyzed MCLE using joint optimization; i.e., we jointly minimized all likelihood com-
ponents’ contributions to the loss in Eq. (2.5), and parameters θt participating in multiple components
were shared during optimization. In this section, we discuss disjoint optimization, in which each likeli-
hood component is treated as a separate MLE regression problem over a subset of the variables.

With disjoint optimization, each component Ai produces an estimate of its parameter subvector; denote
the estimate of each θt ∈ θAi by θ̂(Ai)

t . These estimates obey the bounds for MLE in Sec. 2.3.1. We can
obtain a global estimate θ̂ of the parameters by averaging these subvectors where they overlap:

θ̂t = avgi : θt∈θAi
θ̂

(Ai)
t . (2.18)

Disjoint optimization is simple to implement and is data parallel, permitting easy scaling via parallel
computing (c.f., Eidsvik et al. [under submission]). We now show how to bound the error in θ̂ using the
bounds from each component’s estimate.

Lemma 2.3.6. (Disjoint optimization) Suppose we average the results of disjoint optimizations using
likelihood components A, as in Eq. (2.18). If each estimated subvector θ̂(Ai) has L1 error at most ε, then
the full estimate has error ‖θ̂ − θ∗‖1 ≤ |A|ε.

The factor of |A| appears since the estimation error in each θ̂(Ai) could be in elements of θ which partici-
pate only in likelihood component Ai.

Theorem 2.3.7. (Disjoint MCLE sample complexity)
Suppose we average the results of disjoint optimizations using likelihood components A, as in Eq. (2.18).

16

Figure 2.1: Structures tested. Left-to-right: chain, star, grid. The grid shows an example of two struc-
tured likelihood components (“combs”), as in Sec. 2.5.

Given the assumptions from Theorem 2.3.1 for each component, with a single Cmin denoting a bound for
all components, in order to estimate the parameters θ within L1 error ε with probability at least 1− δ, it
suffices to have a training set of size

n ≥ 29φ2max
C2
min

|A|2
(ε/r)2

log 2r(r+1)|A|
δ . (2.19)

Since Mmax ≤ |A| and ρmin ≥ Cmin, this sample complexity bound for disjoint MCLE is worse than
that for joint MCLE in Corollary 2.3.4, as might be expected.

2.3.5 PAC Bounds

We have approached parameter learning with the goal of PAC-style learning. However, the factors Cmin
and ρmin in the above bounds can increase with model size, so our sample complexity bounds are not
PAC bounds for all model classes. For some model classes, such as chains and stars with bounded fac-
tor strengths, these factors increase at most polynomially with model size, so Theorem 2.3.1 and Theo-
rem 2.3.3 are true PAC bounds. For other model classes, such as models with unbounded factor strengths,
these factors can increase super-polynomially with model size, violating the PAC framework’s require-
ments.

2.4 Empirical Analysis of Bounds

We present an extensive study of our sample complexity bounds for MLE and MPLE on a variety of
synthetic models. Our results show that our bounds accurately capture the learning methods’ behaviors in
terms of properties of the target distribution. We show how those properties vary across different model
structures and factor types, indicating where MPLE may succeed or fail.

2.4.1 Setup

We tested synthetic models over binary variables, with features defined by edge factors φ(Yi, Yj) and
φ(Yi|Xi). We used three structures: chains, stars, and grids (Fig. 2.1). Our models had |Y | = |X|, and
both P (X) and P (Y |X) shared the same structure. Our models used two factor types: associative (in
which θ∗t φt(a, b) = s if a = b and 0 otherwise) and random (in which each value θ∗t φt(·, ·) was chosen
uniformly at random from the range [−s, s]). We call s the factor strength, and we write associative(s)
and random(s) for shorthand. Note the strength s is in log-space.

17

Parameter error

0	

10	

20	

30	

40	

50	

60	

1	 10	 100	 1000	 10000	
Training	 set	 size	

L1
	 p
ar
am

	 e
rr
or
	 MPLE-‐disjoint	

MPLE	
MLE	

0	

5000	

10000	

15000	

20000	

25000	

30000	

1	 10	 100	 1000	 10000	

L1
	 p
ar
am

	 e
rr
or
	 b
ou

nd
	

Training	 set	 size	

MPLE-‐disjoint	

MPLE	
MLE	

Log loss

0	
2	
4	
6	
8	
10	
12	
14	
16	

1	 10	 100	 1000	 10000	
Training	 set	 size	

Lo
g	
(b
as
e	
e)
	 lo
ss
	 MPLE-‐disjoint	

MPLE	
MLE	

0	

10	

20	

30	

40	

50	

60	

1	 10	 100	 1000	 10000	
Training	 set	 size	 Lo

g	
lo
ss
	 b
ou

nd
,	 g
iv
en

	 p
ar
am

s	

MPLE-‐disjoint	
MPLE	
MLE	

Figure 2.2: Bounds: training set size. Top: Actual (learned) parameter error (top-left) is much smaller
than the bound on parameter error (top-right), but both decrease at similar rates w.r.t. training set size.
Bottom: The actual log loss (bottom-left) is close to the loss bound given the actual parameter error
(bottom-right). (Note log scales on y-axes.) Chains; |Y | = 4; random(1) factors. Averaged over 10
models × 10 datasets; error bars 1 stddev.

For optimization, we used conjugate gradient with exact inference for small models in this section and
stochastic gradient with approximate inference (Gibbs sampling) for the large models in Sec. 2.5. We
chose regularization λ according to each method’s sample complexity bound, with ξ = .5 (though this
choice is technically not valid for small training set sizes).3 Our results are averaged over 10 runs on
different random samples, and 10 models when using random factors.

2.4.2 Comparing Bounds

Our theoretical analysis included two types of bounds: a bound on the parameter estimation error ‖θ̂−θ∗‖1
in terms of the training set size (Corollary 2.3.2, Corollary 2.3.4, and Theorem 2.3.7 for MLE, MPLE, and
MPLE-disjoint, respectively) and a bound on the log loss `L(θ̂) in terms of ‖θ̂ − θ∗‖1 (Theorem 2.3.5).
Fig. 2.2 shows that the parameter error bound is much looser than the loss bound for MLE and MPLE
with both joint and disjoint optimization. However, both bounds capture the convergence behavior w.r.t.
training set size. As expected from our analysis, MPLE performs worse with disjoint optimization than
with joint.

3We also ran experiments with regularization chosen via k-fold cross validation, which improved results but did not signifi-
cantly change qualitative comparisons. We omit these results since they do not apply to our analysis.

18

Normalized parameter error

0	

0.05	

0.1	

0.15	

0.2	

0.25	

1	 10	 100	 1000	
1/Cmin	

L1
	 p
ar
am

	 e
rr
or
	 /	
r	

r=23	
r=11	

r=5	

MLE	

0	
0.05	
0.1	

0.15	
0.2	

0.25	
0.3	

1	 10	 100	 1000	
1/Cmin	

L1
	 p
ar
am

	 e
rr
or
	 /	
r	

r=23	
r=11	

r=5	

MPLE	

Normalized parameter error bound

0	

500	

1000	

1500	

2000	

1	 10	 100	 1000	
1/Cmin	 L1

	 p
ar
am

	 e
rr
or
	 b
ou

nd
	 	 /
	 r	

r=23	

r=11	
r=5	

MLE	

0	

1000	

2000	

3000	

4000	

5000	

1	 10	 100	 1000	
1/Cmin	

L1
	 p
ar
am

	 e
rr
or
	 b
ou

nd
	 /	
r	

r=23	
r=11	

r=5	

MPLE	

Figure 2.3: Bounds: minimum eigenvalue Cmin. Top: Learned parameter error for MLE and MPLE
(normalized by dimension r) increases with 1/Cmin. Bottom: Bound on parameter error for MLE and
MPLE increases at a similar rate with 1/Cmin. Chains; |Y | = 2, 4, 8 (r = 5, 11, 23); random(1) factors;
1495 training samples. Each point corresponds to 1 model, averaged 10 datasets; error bars 1 stddev.

Our bounds for MLE and MPLE depend on a key property: Cmin. Though Cmin only needs to lower-
bound the Hessian eigenvalues for our analysis, we simplify our discussion from here on by equating
Cmin with the minimum eigenvalue. Our bounds indicate that, for a fixed training set size, the parameter
estimation error should be proportional to 1/Cmin. Fig. 2.3 plots the error for MLE and MPLE vs.
their respective values 1/Cmin. Though the bound constants are loose, the 1/Cmin dependence appears
accurate.

Our bounds indicate that, for a fixed training set size, the normalized parameter error (normalized by the
dimensionality r) should increase only logarithmically in r. Fig. 2.3 plots results for three values of r;
increasing r does not significantly effect the normalized error.

This section’s results were for chains with random factors, but other model types showed similar behavior.
We next study a much wider variety of models.

2.4.3 Eigenspectra

As shown in the previous subsection, Cmin, the minimum eigenvalue of the loss’ Hessian, largely deter-
mines learning performance. When choosing a loss, we must trade off the goals of maximizing Cmin (i.e.,
maximizing statistical efficiency) and of limiting computational complexity. In this section, we compare
the Cmin for MLE with the Cmin for MPLE on a range of models, thus offering the reader guidance for
when MPLE may replace MLE without sacrificing too much statistical efficiency.

19

Chains: associative factors

1	

1.2	

1.4	

1.6	

0	 5	 10	
Model	 size	 C m

in
	 ra

6o
	 (M

LE
/M

PL
E)
	

0	

100	

200	

0	 2	 4	
Factor	 strength	 C m

in
	 ra

4o
	 (M

LE
/M

PL
E)
	

Chains: random factors

1	

1.05	

1.1	

1.15	

0	 5	 10	
Model	 size	 C m

in
	 ra

3o
	 (M

LE
/M

PL
E)
	

1	
2	
3	
4	
5	

0	 2	 4	
Factor	 strength	 C m

in
	 ra

6o
	 (M

LE
/M

PL
E)
	

Figure 2.4: Chains: Min eigval ratio MLE/MPLE. Higher ratios imply MLE is superior. Left: The ratio
is about constant w.r.t. model size (for fixed factor strength 1). Right: The ratio increases with factor
strength (for fixed model size |Y | = 8). Note: Non-monotonicity in right-most parts of plots is from
systematic numerical inaccuracy. Error bars 1 stddev, computed from 100 random models.

Testing model diameter (chains): Fig. 2.4 plots the MLE/MPLE ratio of Cmin values for chains with
associative and random factors. Higher ratios imply lower statistical efficiency for MPLE, relative to
MLE. For both, the ratio remains fairly constant as model size increases; i.e., model size does not signifi-
cantly affect MPLE’s relative statistical efficiency. However, increased factor strength decreases MPLE’s
efficiency, particularly for associative factors.

Testing node degree (stars): Fig. 2.5 compares MLE and MPLE for stars. For both associative and ran-
dom factors, theCmin ratio increases as |Y | increases, indicating that high-degree nodes decrease MPLE’s
relative statistical efficiency. As with chains, increased factor strength decreases MPLE’s efficiency.

Testing treewidth (grids): Fig. 2.6 compares MLE and MPLE for square grids (as in Fig. 2.1). For both
factor types, the Cmin ratio increases as |Y | and factor strength increase. We estimated Hessians for grids
with width > 3 by sampling from P (X).

Overall, MPLE appears most statistically efficient for low-degree models with weak variable interactions.
In the next section, we discuss how to overcome difficulties with high degree nodes and strong factors by
using structured MCLE instead of MPLE.

2.5 Structured Composite Likelihood

MPLE sacrifices statistical efficiency for computational tractability. In this section, we show how to use
MCLE to improve upon MPLE’s statistical efficiency without much increase in computation. In particular,

20

Stars: associative factors

1	

3	

5	

7	

9	

2	 7	 12	
Model	 size	 C m

in
	 ra

5o
	 (M

LE
/M

PL
E)
	

0	

2000	

4000	

6000	

0	 1	 2	 3	
Factor	 strength	 C m

in
	 ra

6o
	 (M

LE
/M

PL
E)
	

Stars: random factors

1	

1.1	

1.2	

1.3	

0	 5	 10	
Model	 size	 C m

in
	 ra

5o
	 (M

LE
/M

PL
E)
	

0	

5	

10	

15	

20	

0	 2	 4	
Factor	 strength	 C m

in
	 ra

5o
	 (M

LE
/M

PL
E)
	

Figure 2.5: Stars: Min eigval ratio MLE/MPLE. Higher ratios imply MLE is superior. Left: The ratio
increases with model size (for fixed factor strength 1). Right: The ratio increases with factor strength (for
fixed model size |Y | = 8). Error bars 1 stddev, computed from 100 random models.

we demonstrate the benefits of careful selection of structured likelihood components for MCLE.

We state two propositions providing a simple method for choosing MCLE components. The first states
how to choose a consistent MCLE estimator. The second states that consistent MCLE estimators may be
combined to create new, consistent MCLE estimators.

Proposition 2.5.1. Suppose a set of MCLE components A covers each Y variable exactly once; i.e.,
∪iAi = Y , and

∑
i |Ai| = |Y |. Then the MCLE estimator defined by A is consistent.

Proposition 2.5.2. Suppose two MCLE estimators A′ and A′′ are both consistent. Then their union
A = A′ ∪ A′′ is also a consistent MCLE estimator.

The simplest MCLE estimator which may be built using Prop. 2.5.1 is MPLE. We advocate the use of
structured likelihood components, i.e., components Ai containing multiple variables chosen according
to the structure of the model. The components should be chosen to ensure that inference is tractable;
we restrict ourselves to tree structures, a simple yet very flexible class. We give a simple example in
Fig. 2.1, in which two comb-like components cover the entire model while maintaining low treewidth
(i.e., tractable inference) within each component. In general, MCLE estimators with larger components
are more statistically efficient. Fig. 2.6 demonstrates such behavior empirically, with combs (structured
MCLE) having higher Cmin values than MPLE (unstructured MCLE).

Our bound for MCLE indicates that we should choose MCLE estimators based on their components’ min-
imum eigenvalues, but those eigenvalues are often expensive to compute. Corollary 2.3.4 and Prop. 2.5.2
offer a solution: use a mixture of MCLE estimators. Recall that our bound’s dependence on ρmin indi-
cates that a mixture of MCLE estimatorsA′∪A′′ should have statistical efficiency somewhere in between

21

Grids: associative factors

1	

10	

2	 3	 4	 5	 6	 7	

MLE/combs	

MLE/MPLE	

Grid	 width	

C m
in
	 ra

>o
	 (M

LE
/o
th
er
)	

1	

10	

0	 0.5	 1	 1.5	

MLE/combs	

MLE/MPLE	

Factor	 strength	

C m
in
	 ra

:o
	 (M

LE
/o
th
er
)	

Grids: random factors

0.9	

9	

2	 4	 6	

MLE/combs	

MLE/MPLE	

Grid	 width	

C m
in
	 ra

<o
	 (M

LE
/o
th
er
)	

1	

10	

100	

0	 2	 4	

MLE/combs	

MLE/MPLE	

Factor	 strength	
C m

in
	 ra

:o
	 (M

LE
/o
th
er
)	

Figure 2.6: Grids: Min eigval ratio MLE/MPLE. Higher ratios imply MLE is superior. We include
combs (MCLE) as described in Sec. 2.5; MCLE is strictly superior to MPLE. All y-axes are log-scale.
Left: The ratio increases with model size (for fixed factor strength 0.5). Right: The ratio increases with
factor strength (for fixed model size |Y | = 16). Error bars 1 stddev, computed from 10 random models.

that of A′ and A′′. We present a toy example in Fig. 2.7. This example uses a grid with stronger verti-
cal factors than horizontal ones. As might be expected, MCLE components which include these strong
edges (Combs-vert) make better estimators than components which do not (Combs-horiz). The
combination of the two MCLE estimators (Combs-both) lies in between.

Our empirical results provide two rules of thumb for choosing a reasonable estimator when lacking ex-
pert knowledge: (A) use a small number of structured MCLE components which both cover Y and have
low treewidth, and (B) combine multiple such estimators to average out the effects of “bad” compo-
nents.

Fig. 2.8 gives empirical results on large grids, comparing MLE, MPLE, and comb-structured MCLE.
Since we cannot easily compute eigenvalues for large models, we show results in terms of log loss on
held-out test data. MCLE achieves much smaller log loss than MPLE, even though their training times
are similar.

2.6 The CRF Canonical Parameterization

Our work on composite likelihood above originated with a study of the canonical parameterization pro-
posed by Abbeel et al. [2006] for learning parameters of MRFs. We present our findings about the canon-
ical parameterization in this section, as well as how those findings led us to focus on pseudolikelihood
(and ultimately composite likelihood).

22

0.02	

0.2	

2	 3	 4	 5	 6	
Grid	 width	

C m
in
	

Combs-‐vert	

MPLE	

MLE	

Combs-‐both	
Combs-‐horiz	

Figure 2.7: Combining MCLE estimators. As grid width increases, min eigenvaluesCmin for estimators
decrease (so learning becomes harder). Vertical factors are strongest: associative(1.5) vs. associative(.5).
Combs-vert is two vertically oriented combs as in Fig. 2.1; Combs-horiz is the same combs rotated
90 degrees; and Combs-both is their combination. Note Cmin for Combs-both is the average of the
Cmin values for Combs-vert and Combs-horiz. Cmin estimated via sampling for width ≥ 4; error
bars 1 stddev.

1	

1.01	

1.02	

1.03	

1.04	

0	 20	 40	 60	 80	
Model	 size	 Lo

g	
lo
ss
	 ra

6o
	 (o

th
er
/M

LE
)	

combs	

MPLE	

0	

2000	

4000	

6000	

0	 20	 40	 60	
Model	 size	

Tr
ai
ni
ng
	 3
m
e	
(s
ec
)	

combs	

MPLE	

MLE	

Figure 2.8: Structured MCLE on grids. Combs (MCLE) achieves smaller log loss than MPLE (left) but
uses no more training time (right). Associative(.5) factors; 10,000 training samples.

The method from Abbeel et al. [2006] (Sec. 2.6.1) was remarkable for giving PAC-style bounds for learn-
ing parameters of high-treewidth discrete MRFs. Since their method does not use inference during learn-
ing and only uses local computation, its computational tractability does not depend on treewidth. It is also
data parallel. We approached their work to see if it could be extended to more general classes of models,
particularly CRFs.

We first extended their method to CRFs and showed that the polynomial time and sample complexity
bounds still hold (Sec. 2.6.2). We then developed improvements to make the method practical for learning
with arbitrary structures (Sec. 2.6.3) and to make the parameterization more robust (Sec. 2.6.4).

Finally, we realized that the canonical parameterization essentially reduces to pseudolikelihood (Sec. 2.6.5).
Under certain algorithmic design choices, pseudolikelihood learning implicitly computes the canonical
parameterization and is much more efficient than explicit computation. We discuss empirical tests on syn-
thetic data backing this claim in Sec. 2.6.6. However, we postulate that, even though the parameterization
should not be used algorithmically, it may still be useful as an analytical tool (Sec. 2.6.7).

23

2.6.1 Background: Canonical Parameterization for MRFs

Contribution: In addition to giving background, we combine results from Abbeel et al. [2006] and
Roy et al. [2009] to achieve better computational and sample complexity bounds than in Abbeel et al.
[2006].

We first describe the canonical parameterization for MRFs P (X) given by Abbeel et al. [2006]. It is
essentially a way of rewriting P (X) in terms of a product of factors, each of which is a conditional
probability over a small set of variables. Learning reduces to estimating each factor separately by learning
a small conditional distribution from data.

Their method applies to distributions which are representable as bounded-degree factor graphs. A factor
graph for an MRF is a bipartite graphical representation of a model

P (X) = 1
ZP

J∏
j=1

φj(XCj) , (2.20)

with one variable vertex per random variable in X and one factor vertex per factor φj . The factor graph
contains an edge between Xi’s vertex and φj’s vertex whenever variable Xi is an argument of factor φj
(i.e.,Xi ∈ XCj). Abbeel et al. [2006] show that their method has polynomial time and sample complexity,
given that each variable and factor vertex has bounded degree. In other words, each variable must partici-
pate in only a small number of factors, and each factor must have a small number of arguments.

Suppose we are given the structure of an MRF, as specified by the factor domainsXCj , as in Eq. (2.20). We
call {Cj}Jj=1 the original factor domains. The following theorem states the canonical parameterization
for MRFs, which tells us how to learn the MRF parameters.

Theorem 2.6.1. (MRF Canonical Parameterization) (Theorem 3 and Proposition 4 from Abbeel et al.
[2006])
Assume a distribution P (X) factorizes according to Eq. (2.20), with factor domains indexed by {Cj}Jj=1.

• Define the canonical factor domains as

{C∗j }J
∗
j=1 = ∪Jj=12Cj \ ∅, (2.21)

where 2C is the power set of C.

• Let x be an arbitrary assignment of values to X , called the reference assignment.

• Define the jth canonical factor as

f∗j (XC∗j
) = exp

 ∑
U⊆C∗j

(−1)|C
∗
j \U | logP (XU , xC∗j \U |xNC∗j)

 . (2.22)

(This is the “Markov blanket canonical factor” in Section 3.2 of Abbeel et al. [2006].)

Then the distribution P (X) may be equivalently written in the canonical parameterization as:

P (X) = P (x)

J∗∏
j=1

f∗j (XC∗j
) . (2.23)

24

Algorithm 2.1: Canonical Parameterization for MRFs [Roy et al., 2009]

Input: MRF factor domains {Cj}Jj=1, as in Eq. (2.20); reference assignment x.
foreach C∗j ∈ {C∗j }J

∗
j=1 = ∪Jj=12Cj \ ∅ do

Pick any ij ∈ C∗j .
foreach U ⊆ C∗j do

Estimate P (P (Xij [XU , x−U] |XNij
[XU , x−U])) from data.

Compute canonical factor f∗j (XC∗j
), as in Eq. (2.24).

Multiply all canonical factors together to estimate P (X), as in Eq. (2.23).

Learning using Theorem 2.6.1 consists of estimating each canonical factor via a set of regression prob-
lems P (XU , xC∗j \U |xNC∗j) and then multiplying the canonical factors together. Abbeel et al. (Theorems

5, 6) show that this parameterization permits parameter learning in polynomial time and sample com-
plexity (polynomial in the size of the original factor graph representation). They also show that slight
structure misspecifications do not seriously harm the estimated model (Theorem 7). Since no inference is
required, even high-treewidth structures may be learned using polynomial time and samples. Moreover,
learning is data parallel since it decomposes into a set of disjoint regression problems over subsets of the
variables.

Roy et al. [2009] propose an improvement to this parameterization which reduces the complexity of each
canonical factor, paraphrased in the following theorem. First, we define notation: If A is a variable or set
of variables and u, v are assignments to disjoint sets of variables U, V s.t. A ⊆ U ∪ V , then we write
A[u, v] to denote an assignment to variables in A taking values from u, v.

Theorem 2.6.2. (Improved MRF Canonical Parameterization) (Theorem 2.1 from Roy et al. [2009])
Under the assumptions and definitions from Theorem 2.6.1, additionally define Xij ∈ XC∗j

to be an
arbitrary variable in the domain of the jth canonical factor. We can equivalently express each canonical
factor f∗j (XC∗j

) as:

f∗j (XC∗j
) = exp

 ∑
U⊆C∗j

(−1)|C
∗
j \U | logP (Xij [XU , x−U] |XNij

[XU , x−U])

 . (2.24)

This improved factor involves fewer random variables and so requires less computation and fewer samples
to compute than Eq. (2.22). The resulting algorithm is detailed in Alg. 2.1.

Abbeel et al. [2006] use discrete variables and the less efficient parameterization from Eq. (2.22). The-
orem 2.6.3 and Theorem 2.6.4, which state computational and sample complexity bounds for Alg. 2.1,
generalize Theorems 5 and 6 from Abbeel et al. [2006] by leaving the variable and factor types unspec-
ified. Corollary 2.6.6 and Corollary 2.6.7 instantiate these theorems for models with discrete variables,
giving results analogous to Theorems 5 and 6 from Abbeel et al. [2006]. Since Alg. 2.1 uses the more effi-
cient parameterization from Roy et al. [2009], our bounds are better than those from Abbeel et al. [2006].
The bounds measure error using the Kullback-Liebler (KL) divergence, which measures distance between
two distributions P (X), Q(X):

KL(P‖Q) = EP (X)

[
log P (X)

Q(X)

]
. (2.25)

The symmetric KL divergence is KL(P‖Q) +KL(Q‖P).

25

Theorem 2.6.3. (Computational complexity of the canonical parameterization for MRFs) (Generalized
from Abbeel et al. [2006], Roy et al. [2009])
Suppose that (a) Alg. 2.1 is given the factor graph structure according to which the target distribution
P (X) factorizes (Eq. (2.20)); (b) each of the J factors has at most k arguments; and (c) estimating
P (Xij [XU , x−U] |XNij

[XU , x−U]) for any ij , U takes time at most C0. Then Alg. 2.1 runs in time

O
(

22kJ · C0

)
. (2.26)

Proof (Theorem 2.6.3):: There are at most J · 2k canonical factors, each of which has at most 2k terms
P (Xij [XU , x−U] |XNij

[XU , x−U]) in Eq. (2.24). �

Theorem 2.6.4. (Sample complexity of the canonical parameterization for MRFs) (Generalized from
Abbeel et al. [2006], Roy et al. [2009])
Abbreviate P [Xij ;U]

.
= P (Xij [XU , x−U] |XNij

[XU , x−U]). Let Q be the distribution returned by
Alg. 2.1. Suppose that for a given ε0, δ0 > 0 and a given x, U, ij , we can estimate P [Xij ;U] uniformly
well with probability at least 1− δ0:

|logP [Xij ;U]− logQ[Xij ;U]| ≤ ε0, ∀XU . (2.27)

Under the assumptions in Theorem 2.6.3, KL(P‖Q) +KL(Q‖P) ≤ 22k+1Jε0 holds with probability at
least 1− 22kJδ0.

Equivalently, to ensureKL(P‖Q)+KL(Q‖P) ≤ ε holds with probability at least 1−δ, we must estimate
each P [Xij ;U] uniformly well with ε0 = ε/

(
22k+1J

)
and δ0 = δ/

(
22kJ

)
.

We first state a lemma which shows how normalization constants cancel when we measure error using
symmetric KL divergence.

Lemma 2.6.5. Suppose two distributions P (X) (as in Eq. (2.20)) and Q(X) = 1
ZQ

∏J
j=1 φ̂j(XCj) share

the same set of factor domains {Cj}Jj=1. Then the symmetric KL divergence factors as:

KL(P‖Q) +KL(Q‖P) =
∑
j

EP (X)

[
log φj − log φ̂j

]
+ EQ(X)

[
log φ̂j − log φj

]
. (2.28)

Proof (Lemma 2.6.5):: Abbreviate φj = φj(XCj) and φ̂j = φ̂j(XCj).

KL(P‖Q) +KL(Q‖P) (2.29)
= EP (X) [logP (X)− logQ(X)] + EQ(X) [logQ(X)− logP (X)] (2.30)

= EP (X)

− logZP +

∑
j

log φj

+ logZQ −

∑
j

log φ̂j

+EQ(X)

− logZQ +

∑
j

log φ̂j

+ logZP −

∑
j

log φj

 (2.31)

= EP (X)

∑
j

log φj

−
∑

j

log φ̂j

+ EQ(X)

∑
j

log φ̂j

−
∑

j

log φj

 (2.32)

=
∑
j

EP (X)

[
log φj − log φ̂j

]
+ EQ(X)

[
log φ̂j − log φj

]
(2.33)

26

�

Proof (Theorem 2.6.4):: Starting from the result of Lemma 2.6.5, we bound the symmetric KL divergence
between the target distribution P (X) and our estimate Q(X). We use the canonical parameterization for
both distributions, as defined in Eq. (2.23) and Eq. (2.24). Let f̂j denote the jth canonical factor for
Q(X).

KL(P‖Q) +KL(Q‖P) =

J∗∑
j=1

EP (X)

[
log fj − log f̂j

]
+ EQ(X)

[
log f̂j − log fj

]
. (2.34)

Each expectation may be expanded using the definition of canonical factors in Eq. (2.24). Also using our
assumption that conditional probabilities are estimated uniformly well, as in Eq. (2.27), we get

EP (X)

[
log fj − log f̂j

]
= EP (X)

 ∑
U⊆C∗j

(−1)|C
∗
j \U |

(
logP [Xij ;U]− logQ[Xij ;U]

) (2.35)

≤ EP (X)

 ∑
U⊆C∗j

|logP [Xij ;U]− logQ[Xij ;U]|

 (2.36)

≤ EP (X)

[
2|C
∗
j |ε0

]
(2.37)

= 2|C
∗
j |ε0 (2.38)

≤ 2kε0 . (2.39)

(Recall that original and canonical factors have at most k arguments.) Likewise,

EQ(X)

[
log f̂j − log fj

]
≤ 2kε0 . (2.40)

Using Eq. (2.39), Eq. (2.40) to upper-bound each term in Eq. (2.34), we get the theorem’s KL bound:

KL(P‖Q) +KL(Q‖P) =

J∗∑
j=1

2kε0 + 2kε0 (2.41)

=
(
J · 2k

)
·
(
2kε0 + 2kε0

)
(2.42)

= J · 22k+1ε0 . (2.43)

The bound on the probability of failure comes from a union bound over all 22kJ regression problems
Q[Xij ;U]. �

Abbeel et al. [2006] restrict their analysis to the case of discrete variables, for which it is easy to achieve
uniform error bounds as in Eq. (2.27). We state results analogous to theirs in the next two corollar-
ies.

Corollary 2.6.6. (Computational complexity of the canonical parameterization for discrete MRFs)
(Generalized from Abbeel et al. [2006], Roy et al. [2009]) In addition to the assumptions in Theorem 2.6.3,
assume that (a) X are discrete variables with maximum arity v and (b) Alg. 2.1 is given n i.i.d. training
examples generated from P (X). Let b .

= 1 + maxi |Ni| be the maximum number of neighbors of any
variable, plus 1. Then Alg. 2.1 runs in time

O
(

22kJ
(
vk + nb

))
. (2.44)

27

Proof (Corollary 2.6.6):: Each local distribution Q[Xij ;U] = Q(Xij [XU , x−U] |XNij
[XU , x−U]) may

be represented as a table of counts over k variables. (Recall that |U | ≤ k variables are undetermined, while
the rest are set as x.) This table has at most vk values, so initializing it to zero takes time O(vk). Adding
counts to this table for all training examples takes time O(nb) since each local distribution depends on the
values of at most b variables. Normalizing the table takes timeO(vk). So C0 = vk+nb in Theorem 2.6.3.
�

Theorem 5 in Abbeel et al. [2006] gives a running time bound of O(n2kJ(k + b) + 22kJvk); their proof
does not account for initializing and normalizing each Q[Xij ;U] in the canonical factors. However, this
difference is relatively unimportant since the 22kJvk term dominates in many settings. The following
corollary, bounding the sample complexity, gives a result essentially the same as that in Abbeel et al.
[2006].

Corollary 2.6.7. (Sample complexity of the canonical parameterization for discrete MRFs) (General-
ized from Abbeel et al. [2006], Roy et al. [2009]) In addition to the assumptions in Theorem 2.6.3 and
Corollary 2.6.6, assume γ .

= minx P (xi, xNi) > 0. To ensure KL(P‖Q) + KL(Q‖P) ≤ ε holds with
probability at least 1− δ, it suffices to use n i.i.d. examples from P (X), where

n ≥ 24k+3J2(1+ε/(22k+2J))
2

γ2ε2
log 22k+2Jvb

δ (2.45)

≈ 24k+3J2

γ2ε2
log 22k+2Jvb

δ . (2.46)

Proof (Corollary 2.6.7):: Recall that variables have arity at most v, and b = maxi |Ni| + 1. Lemma 18
in Abbeel et al. [2006] tells us that, for |logP (xi|xNi)− logQ(xi|xNi)| ≤ ε0 to hold with probability at

least 1− δ0 for all values xi, xNi , we need at most n ≥ (1+ε0/2)2

2γ2(ε0/2)2
log 4vb

δ0
i.i.d. examples.

Theorem 2.6.4 tells us how to substitute ε0, δ0 for values in terms of ε, δ. Plugging these values in, we
get:

n ≥ (1+ε/(22k+2J))
2

2γ2(ε/(22k+2J))
2 log 4vb

δ/(22kJ)
(2.47)

=
24k+3J2(1+ε/(22k+2J))

2

γ2ε2
log 22k+2Jvb

δ . (2.48)

�

The main distinctions between our bounds for discrete models and those from Abbeel et al. [2006] are
the definitions of b and γ. For us, b bounds the size of the Markov blanket (neighbors) of each variable:
b = maxi |Ni|+ 1. For Abbeel et al. [2006], b bounds the size of the Markov blanket of sets of variables:
b = maxj |NCj |, where {Cj} are the domains of the original factors. Since Cj can be of size k, their b
can be about k times larger than ours. More significantly, their γ (γk+b in their notation) is much smaller;
in their notation, our bound would have γk+1 instead of γk+b, giving a much smaller sample complexity.
Both of these improvements come from the simplified canonical factor in Eq. (2.24) from Roy et al.
[2009].

Roy et al. [2009] demonstrate empirically that their simplification permits the canonical parameterization
to be used on real-world problems. Nevertheless, as the degree of the factor graph increases, this learning
method’s computational and sample complexity can increase at an exponential rate, thus prohibiting its
use on many models. In fact, even for simple, low-treewidth models for which traditional max-likelihood

28

parameter learning is efficient, a single variable involved in many factors prevents the use of this canonical
parameterization. In Sec. 2.6.3, we show how to modify this method to make it practical for arbitrary
structures.

Together, Corollary 2.6.6 and Corollary 2.6.7 prove PAC learnability for positive distributions repre-
sentable as bounded-degree factor graphs. At the end of Sec. 2.6.5, we compare this learnability result
with our results using pseudolikelihood and composite likelihood from Sec. 2.3.

2.6.2 Extension to CRFs

Contribution: We extend the canonical parameterization to CRFs, generalizing the sample and computa-
tional complexity results from Sec. 2.6.2.

Suppose the target distribution is representable as a bounded-degree factor graph:

P (Y|X) = 1
ZP (X)

J∏
j=1

φj(YCj , XDj) . (2.49)

For CRFs, the factor graph only has variable vertices for Y , not X . Therefore, the complexity of learning
will largely depend on Y , not on X .

The extension of the canonical parameterization from MRFs to CRFs is straightforward. Essentially, all
probabilities in the MRF parameterization and proofs may be modified to condition on all of X . At the
end, the probabilities may be simplified by conditioning on the Markov blanket rather than all of X :
P (A|B,X) = P (A|B,XNA).

The following theorem generalizes the canonical parameterization to CRFs. We overload the notation NC

to index neighbors of YC in both Y and X ; i.e., YNC is the Markov blanket of YC in Y , and XNC is the
Markov blanket of YC in X .

Theorem 2.6.8. (CRF Canonical Parameterization)
Assume a distributionP (Y|X) factorizes according to Eq. (2.49), with factor domains indexed by {Cj}Jj=1.

• Define the canonical factor domains {C∗j }J
∗
j=1 as in Eq. (2.21).

• Let the reference assignment y be an arbitrary assignment of values to Y (not to X).

• Define the jth canonical factor to be

f∗j (YC∗j , XD∗j
) = exp

 ∑
U⊆C∗j

(−1)|C
∗
j \U | logP

(
Yij [YU , y−U]

∣∣∣∣YNij [YU , y−U], XNij

) , (2.50)

where ij ∈ C∗j may be chosen arbitrarily. (Note D∗j is defined w.r.t. ij: XD∗j
= XNij

.)

Then the distribution P (Y|X) may be equivalently written in the CRF canonical parameterization as:

P (Y|X) = P (y|X)

J∗∏
j=1

f∗j (YC∗j , XD∗j
) . (2.51)

29

Algorithm 2.2: Canonical Parameterization for CRFs
Input: CRF factor domains {(Cj , Dj)}Jj=1, as in Eq. (2.49); reference assignment y.
foreach C∗j ∈ {C∗j }J

∗
j=1 = ∪Jj=12Cj \ ∅ do

Pick any ij ∈ C∗j .
foreach U ⊆ C∗j do

Estimate P
(
Yij [YU , y−U]

∣∣∣∣YNij [YU , y−U], XNij

)
from data.

Compute canonical factor f∗j (YC∗j , XD∗j
), as in Eq. (2.50).

Multiply all canonical factors together to estimate P (Y|X), as in Eq. (2.51).

Proof Sketch (Theorem 2.6.8): The proof is exactly the same as for MRFs in Abbeel et al. [2006] and
Roy et al. [2009], except that all probabilities over Y are modified to be conditioned onX : P (YA|YB) −→
P (YA|YB,X). At the end, simplify the conditional probabilities in the theorems by conditioning on the
Markov blankets instead of all of X : P (YA|YB,X) −→ P (YA|YB, XNA). �

As for MRFs, learning CRF parameters requires estimating the conditional distributions in the canonical
factors. Importantly, the domains of canonical factors are defined w.r.t. the original factors’ domains in
Y , not in X . The algorithm is detailed in Alg. 2.2.

The computational and sample complexity bounds for MRFs generalize to CRFs. Given a bounded-degree
factor graph CRF structure, we can learn its parameters in polynomial time and sample complexity. The
following two theorems generalize Theorem 2.6.3 and Theorem 2.6.4 from MRFs to CRFs.

Theorem 2.6.9. (Computational complexity of the canonical parameterization for CRFs)

Abbreviate P [Yij ;U]
.
= P

(
Yij [YU , y−U]

∣∣∣∣YNij [YU , y−U], XNij

)
. Suppose that (a) Alg. 2.2 is given the

factor graph structure according to which the target distribution P (Y|X) factorizes (Eq. (2.49)); (b) each
of the J factors has at most k arguments in Y; and (c) estimating P [Yij ;U] for any ij , U takes time at
most C0. Then Alg. 2.2 runs in time

O
(

22kJ · C0

)
. (2.52)

Theorem 2.6.10. (Sample complexity of the canonical parameterization for CRFs)
Let Q be the distribution returned by Alg. 2.2. Suppose that for a given ε0, δ0 > 0 and a given y, U, ij , we
can estimate P [Yij ;U] uniformly well with probability at least 1− δ0:

|logP [Yij ;U]− logQ[Yij ;U]| ≤ ε0, ∀XU . (2.53)

Under the assumptions in Theorem 2.6.9, KL(P‖Q) +KL(Q‖P) ≤ 22k+1Jε0 holds with probability at
least 1− 22kJδ0.

Equivalently, to ensureKL(P‖Q)+KL(Q‖P) ≤ ε holds with probability at least 1−δ, we must estimate
each P [Yij ;U] uniformly well with ε0 = ε/

(
22k+1J

)
and δ0 = δ/

(
22kJ

)
.

The proofs of Theorem 2.6.9 and Theorem 2.6.10 are exactly the same as the proofs for MRFs in The-
orem 2.6.3 and Theorem 2.6.4. We do not add corollaries for discrete models here, but they would be
analogous to those for MRFs in Corollary 2.6.6 and Corollary 2.6.7.

The canonical parameterization for general models is unintuitive, so we write out the parameterization for
pairwise models in the following corollary to help the reader’s understanding.

30

Algorithm 2.3: Canonical Parameterization for CRFs, with Pre-computed P (Yi |YNi , XNi)

Input: CRF factor domains {(Cj , Dj)}Jj=1, as in Eq. (2.49); reference assignment y.
foreach Yi ∈ Y do

Estimate P (Yi |YNi , XNi) from data.

foreach C∗j ∈ {C∗j }J
∗
j=1 = ∪Jj=12Cj \ ∅ do

Pick any ij ∈ C∗j .
Compute canonical factor f∗j (YC∗j , XD∗j

), as in Eq. (2.50), using pre-computed
P (Yij |YNij , XNij

).

Multiply all canonical factors together to estimate P (Y|X), as in Eq. (2.51).

Corollary 2.6.11. (Canonical Parameterization for Pairwise CRFs)
Suppose a distribution P (Y|X) is expressible as a CRF as in Eq. (2.49), with only pairwise factors:
|Cj | = 2, ∀j. We write Edges .

= {Cj}Jj=1. The distribution may be expressed as:

logP (Y|X) (2.54)
= logP (y|X)

+
∑
i

logP
(
Yi | yNi , XNi

)
+

∑
(i,j)∈Edges

logP (Yi |Yj , yNi\j , XNi)− logP (yi |Yj , yNi\j , XNi)− logP (Yi | yNi , XNi) ,

where we pick an endpoint i from each (i, j) arbitrarily.

2.6.3 Extension to Arbitrary Structures

Contribution: We mention two improvements to the canonical parameterization so that it is practical for
learning with arbitrary structures.

First, in the improved canonical factors (Eq. (2.50) for CRFs and Eq. (2.24) and MRFs), note that any ij ∈
C∗j is acceptable, so it makes sense to pre-compute the local conditional distributions P (Yi |YNi , XNi) for
all i. In practice, learning these |Y| distributions (with no fixed variables) is more efficient than learning
22kJ distributions (with variables fixed to y), for each term in the canonical factors. (Roy et al. [2009],
who focus on structure learning, do not explicitly discuss this pre-computation.) A modified algorithm
which pre-computes the local conditional distributions is given in Alg. 2.3.

Second, we can sub-factorize the conditional probabilities P (Yi |YNi , XNi). Since we already assume
knowledge of the target distribution’s structure, we can factorize these local conditional probabilities ac-
cording to the structure.

These improvements result in a learning method with these properties:

• The number of parameters which must be estimated for the canonical parameterization is within a
constant factor of the number of parameters in the traditional representation.

• The canonical parameterization has the same structure (set of factors) as the target distribution.

Unfortunately, it is not straightforward to use these ideas to improve our computational and sample com-
plexity bounds. While the general results in Theorem 2.6.9 and Theorem 2.6.10 still hold, it is difficult to

31

instantiate better bounds for specific classes of models. Our bounds for discrete MRFs in Corollary 2.6.6
and Corollary 2.6.7 require that local conditional distributions be estimated uniformly well (Eq. (2.27)).
Achieving these uniform bounds on general models is not easy, even when there are bounds w.r.t. KL
divergence or other average-case measures.

2.6.4 Optimizing the Reference Assignment

Contribution: We discuss the choice of the reference assignment, with empirical benefits and implications
for theoretical analysis (discussed in Sec. 2.6.7).

The canonical parameterization in Eq. (2.51) is defined with respect to an arbitrary reference assignment
y, and current theory is oblivious to the choice of y. In practice, the choice of y is important. Intuitively, if
a value yj is rare in our data, then our probability estimates involving yj are likely to be inaccurate.

To avoid a worst-case scenario, we could choose y randomly. A better choice might be per-variable MLE:
set each yj as the empirical maximum likelihood estimate.

Rather than fixing y to a single value, we can also average over an arbitrary distribution Q(Y). When we
express the canonical parameterization in log form, the parameterization decomposes into a sum of log
conditional probabilities. Taking the expectation over y w.r.t. Q(Y) is equivalent to a geometric mean
in non-log-space. The following theorem gives the canonical parameterization with reference assignment
averaging.

Theorem 2.6.12. (CRF Canonical Parameterization, with reference assignment averaging)

Choose an arbitrary distributionQ(Y). Under the assumptions in Theorem 2.6.8, the distributionP (Y|X)
may be expressed by averaging over reference assignments y (in log space):

logP (Y|X) (2.55)

= EQ(Y)

[
logP (Y |X)

]
+

J∗∑
j=1

∑
U⊆C∗j

(−1)|C
∗
j \U |EQ(Y)

[
logP

(
Yij [YU , Y −U]

∣∣∣∣YNij [YU , Y −U], XNij

)]
.

Proof Sketch (Theorem 2.6.12): Take the expectation w.r.t. Q(Y) of the canonical parameterization in
Eq. (2.51), and use linearity of expectation. �

Joseph B.: I commented out the above theorem instantiated for pairwise models.

Since we can take the expectation over Y separately for each conditional probability (in log space), refer-
ence assignment averaging can be done efficiently for many factor representations (including table factors
for discrete variables and Gaussian factors for real variables). We propose two distributions Q(Y): (a) the
uniform distribution and (b) the training sample distribution.

Abbeel et al. [2006] and Roy et al. [2009] did not discuss how to choose the reference assignment. How-
ever, after we derived these methods, Pieter Abbeel told us in a conversation that he had considered similar
ideas, though those results remain unpublished. His published work on this parameterization came before
the improvements of Roy et al. [2009], which were important for making the method practical.

32

2.6.5 Relation to Pseudolikelihood

The canonical parameterization with pre-computed local conditional distributions in Alg. 2.3 might re-
mind the reader of pseudolikelihood. This section elucidates the relationship between the two methods.
The crucial choice in the canonical parameterization is in how we calculate the local conditional distribu-
tions which are used to compute canonical factors.

We first show that, under one choice for calculating these local conditional distributions, the canonical
parameterization reduces to a maximum pseudolikelihood estimate. We then demonstrate other choices,
under which the canonical parameterization and pseudolikelihood are no longer equivalent. Finally, we
argue that the latter choices are non-optimal and that pseudolikelihood will generally outperform the
canonical parameterization. Our experiments discussed in Sec. 2.6.6 support this argument.

The following theorem states that, with reasonable choices of how to estimate the local conditional dis-
tributions, the canonical parameterization produces the same result as the maximum pseudolikelihood
estimate.

Theorem 2.6.13. (CRF Canonical Parameterization: Reduction to Pseudolikelihood)

Under the assumptions in Theorem 2.6.8, additionally assume:

• we use Alg. 2.3, which pre-computes local conditional distributions P (Yi |YNi , XNi), and

• we compute P (Yi |YNi , XNi) using either (a) joint optimization with shared parameters or (b)
disjoint optimization with factor averaging, as described in Sec. 2.3.4.

Then the canonical parameterization produces the same parameter estimates as pseudolikelihood.

Proof (Theorem 2.6.13): We assumed that our estimated local conditional distribution P̂ (Yi |YNi , XNi), ∀i,
have consistent parameters: if P̂ (Yi |YNi , XNi) and P̂ (Yj |YNj , XNj) both depend on a factor φk(Yi, Yj , ·),
then both local conditional distributions use the same parameters (factor values for φk). Since we have
a single estimate of the parameters for each factor φk, we can plug these into Eq. (2.49) to produce an
estimate P̂ (Y|X) of the full distribution; this is exactly the maximum pseudolikelihood estimate.

We now need to show that using our estimates P̂ (Yi |YNi , XNi) to compute the canonical factors in
Eq. (2.50) and then plugging those canonical factors into Eq. (2.51) produces the same estimate P̂ (Y|X)
of the full distribution. This equivalence is exactly what Theorem 2.6.8 states, where we replace P in
Theorem 2.6.8 with our estimate P̂ . �

We presented Theorem 2.6.13 in Bradley and Guestrin [2012]. This theorem is really a restatement of
Theorem 2.6.8, but as we argue later, this theorem’s assumptions are very practical.

We now give an opposing result, explaining that the two methods are not necessarily equivalent under
modified assumptions. We still assume that we estimate local conditional distributions P̂ (Yi|YNi , XNi)
for each i, rather separately estimating P (Yij [YU , y−U]

∣∣YNij [YU , y−U], XNij
) for each ij and U in

Eq. (2.50). The canonical parameterization uses these estimates to compute the canonical factors in
Eq. (2.50); the pseudolikelihood estimate uses factor averaging, as described in Sec. 2.3.4.

The key to the following theorem is that we permit conflicting factor estimates. If P (Yi|YNi , XNi) depends
upon a factor φk, denote the factor estimate in P̂ (Yi|YNi , XNi) as φ̂(i)

k . An inconsistent factor estimate is
a pair φ̂(i)

k (yCk) 6= φ̂
(j)
k (yCk), where i, j ∈ Ck and yCk are some values for YCk .

33

Theorem 2.6.14. (CRF Canonical Parameterization: Distinction from Pseudolikelihood)

Under the assumptions in Theorem 2.6.8, as well as the assumptions that:

• the canonical factors in Eq. (2.50) are computed using local conditional distributions P̂ (Yi|YNi , XNi)
estimated separately for each i and

• there exists at least one factor φk(YCk , XDk) s.t. |YCk | > 1,

there exist:

• a set of local conditional distributions with conflicting factor estimates and

• a choice of ij for each canonical factor j

such that the canonical parameterization and pseudolikelihood estimate produce different estimates of
P (Y|X).

Proof (Theorem 2.6.14): Sec. A.2.1

The proof relies heavily on the fact that the jth canonical factor in Eq. (2.50) is defined w.r.t. an arbitrary
ij ∈ C∗j . We now show that the canonical parameterization can be modified to average over all ij ∈ C∗j
but that this modification does not make it equivalent to pseudolikelihood when there are conflicting factor
estimates.

Theorem 2.6.15. (CRF Canonical Parameterization, with ij averaging)

Under the assumptions in Theorem 2.6.8, the canonical factors may be expressed by averaging over all
ij ∈ C∗j (in log space):

logP (Y|X) (2.56)

= logP (y|X)

+
J∗∑
j=1

1
|C∗j |

∑
ij∈C∗j

∑
U⊆C∗j

(−1)|C
∗
j \U | logP

(
Yij [YU , y−U]

∣∣∣∣YNij [YU , y−U], XNij

)
.

Proof Sketch (Theorem 2.6.15): Since ij ∈ C∗j may be chosen arbitrarily for each canonical factor j,
we may take the expectation over ij w.r.t. an arbitrary distribution. In this case, we use the uniform
distribution over ij . �

Theorem 2.6.16. (CRF Canonical Parameterization, with ij averaging: Distinction from Pseudolikeli-
hood)

Under the assumptions in Theorem 2.6.15, as well as the assumptions that:

• the canonical factors in Eq. (2.50) are computed using local conditional distributions P̂ (Yi|YNi , XNi)
estimated separately for each i and

• there exists at least one factor φk(YCk , XDk) s.t. |YCk | > 1,

there exists a set of local conditional distributions with conflicting factor estimates such that the canonical
parameterization and pseudolikelihood estimate produce different estimates of P (Y|X).

Proof (Theorem 2.6.16): Sec. A.2.2

34

Since the canonical parameterization can be distinct from pseudolikelihood, the obvious question is: which
is better? We list two main reasons why we believe that pseudolikelihood is preferable.

• Pseudolikelihood estimation involves less computation. The canonical parameterization may either
(a) use pseudolikelihood as a subroutine for calculating the canonical factors or (b) compute each
conditional probability in Eq. (2.50) separately, which (based on our experiments) is much more
computationally costly.

• Pseudolikelihood with joint optimization may give better estimates. The sample complexity bounds
for pseudolikelihood with joint and disjoint optimization in Sec. 2.3.4 and Sec. 2.3.2 indicate that
joint optimization may give more accurate results than disjoint optimization. (These are only upper
bounds, but our experiments discussed in Sec. 2.4 match this prediction.) The canonical parameter-
ization uses disjoint optimization (else it reduces to pseudolikelihood). We have not found evidence
(theoretical or empirical) that the combination of disjoint estimates of local conditional probabili-
ties used by the canonical parameterization is superior to the combination used by pseudolikelihood
with factor averaging (let alone pseudolikelihood with joint optimization).

PAC Learnability Results

We briefly compare the PAC learnability results based on the canonical parameterization with those based
on pseudolikelihood (MPLE) and composite likelihood (MCLE). The class of models currently known to
be PAC-learnable using the canonical parameterization is the class of strictly positive distributions repre-
sentable as bounded-degree factor graphs (Corollary 2.6.6, Corollary 2.6.7). We postulate that this class is
a strict subset of the class of models PAC-learnable using MCLE, barring issues of identifiability.

There are clearly models outside of this class which are learnable using MCLE. For example, star-
structured models are not representable as bounded-degree factor graphs, but it is a class of models learn-
able via MCLE (if factor strengths are bounded). (On star graphs, MCLE may be chosen to be equivalent
to MLE, for which our sample complexity bound in Theorem 2.3.1 is a PAC bound. The quantity Cmin
increases at most polynomially with model size.)

To prove our postulate, we would need to prove that the class of identifiable positive bounded-degree
factor graph models is PAC-learnable using MCLE. While we do not have a thorough proof, we present
a rough argument for why this class is learnable using MPLE. The canonical parameterization requires
uniformly accurate estimates of conditional probabilities P (Xi|XNi). Since the model is identifiable,
accurate estimates of conditional probabilities (which imply low log loss) imply accurate parameter es-
timates. If regressing each variable on its neighbors produces accurate parameter estimates, then MPLE
will succeed.

It is interesting that the canonical parameterization overcomes identifiability issues. It would be valuable
if we could prove that MPLE succeeds (w.r.t. log loss) on non-identifiable models.

2.6.6 Experiments

We ran parameter learning experiments comparing pseudolikelihood, MLE, and the canonical parameter-
ization, including all four methods for choosing the reference assignment y: random, per-variable MLE,
uniform expectation, and sample expectation. We also tested the canonical parameterization with and

35

without sub-factorization (Sec. 2.6.3). We tested discrete and real-valued (Gaussian) synthetic data, both
of which gave similar results.

We mention our main findings qualitatively but do not give details because of our later discovery in
Sec. 2.6.7 that the canonical parameterization essentially reduces to pseudolikelihood. We discuss al-
gorithm performance in terms of convergence to the optimal held-out log likelihood as the sample size
n increases, and we compare with MLE, which serves as a gold standard (since the models were low-
treewidth, permitting exact inference).

• Sub-factorization (Sec. 2.6.3) improved performance of the canonical parameterization. Even with
the extra computation required for sub-factorization, learning was much faster than MLE training.

• Taking expectations over reference assignments y (Sec. 2.6.4) improved performance over using
fixed y.

• When using both sub-factorization and reference assignment averaging, the canonical parameter-
ization performed almost as well as MLE, and it performed very similarly to pseudolikelihood
(explained in Sec. 2.6.7).

2.6.7 Applications in Analysis

In the previous section, we argued that the canonical parameterization is not a useful algorithm since
pseudolikelihood is preferable. In this section, we suggest that the canonical parameterization may still be
useful as a tool for theoretical analysis.

We postulate that the canonical parameterization may be useful for analyzing pseudolikelihood, or any
parameter estimation method which produces a single set of factor estimates (without the conflicting
factors discussed in Sec. 2.6.5). Like Abbeel et al. [2006], we suggest using the canonical parameterization
to rewrite the error in estimating the full distribution in terms of the error in estimating local conditional
probabilities. However, we use the ideas of averaging over both reference assignments and ij ∈ C∗j ,
permitting us to express the local errors differently. The final step—showing how to bound the local
errors in a nontrivial way—still eludes us. Nevertheless, we argue that our local error terms should be
easier to bound (requiring fewer training examples) than the uniform error bound used by Abbeel et al.
[2006] in Eq. (2.27).

In the following, we use pairwise MRFs for clarity of presentation, but general CRFs may be analyzed
analogously. The following theorem bounds the symmetric KL divergence between two distributions
using the canonical parameterization with averaged reference assignments and ij .

Theorem 2.6.17. Given P .
= P (Y) and Q .

= Q(Y) which factorize according to Eq. (2.20), denote
the local conditionals of P by Pi

.
= P (Yi|YNi); likewise, denote Qi

.
= Q(Yi|YNi). We may write the

symmetric KL divergence between P and Q as:

KL(P‖Q) +KL(Q‖P) (2.57)

=
∑
i

(
1− |Ni|2

)
EP (YNi)

[
EP (Yi|YNi) [logPi − logQi] + EQ(Yi) [logQi − logPi]

]
+ 1

2

∑
j∈Ni

EQ(Yj)P (YNi\j)

[
EP (Yi|YNi\j) [logPi − logQi] + EQ(Yi|Yj) [logQi − logPi]

]
.

36

Proof (Theorem 2.6.17): Sec. A.2.3. In the proof, we use the symmetric KL divergence, rather than
non-symmetric, since it lets us cancel out the partition functions of P,Q. Also, for the canonical parame-
terization for P , we take the expectation over reference assignment w.r.t. Q; and vice versa.

In the above theorem, let P be the target distribution andQ be our estimate. Then the theorem decomposes
the error (symmetric KL) of our estimate into a set of local error terms of the form E [logPi − logQi]. If
we could bound these local errors, then we could bound the error in the estimate of the full distribution.
The first of the four types of local error terms in Eq. (2.57) is a local KL divergence: KL(Pi‖Qi)

.
=

EP (Yi,YNi)
[logPi − logQi]; existing PAC-style bounds for regression may be used to bound this error

term. However, the other error terms are non-standard. For example, the local KL divergence is always
non-negative, but the other terms can be negative, so they are not clearly interpretable as error measures.
We currently do not know how to bound them usefully.

Although we have not completed this last step in the analysis, we believe that Theorem 2.6.17 could
improve upon the results of Abbeel et al. [2006] by permitting weaker assumptions. In particular, Abbeel
et al. [2006] require uniformly good estimates of the local conditional distributions, as in Eq. (2.27). Each
of the local error terms in Eq. (2.57) involves an expectation over YNi or YNi\j w.r.t. the target distribution
P . We could thus use bounds on the local errors which involve these expectations w.r.t. P and permit
higher error on parts of the distribution P which have low probability.

Theorem 2.6.17 may seem to suggest a new algorithm for parameter learning. In the theorem, if we
let Q be our model and P be the target distribution, then the theorem decomposes the symmetric KL
divergence into a set of local error terms for each variable Yi. One might propose an algorithm which
uses the right-hand side of Eq. (2.57) as a loss to be minimized w.r.t. the model Q. (This loss would
be convex since the symmetric KL is convex.) The problem with this approach is that the local error
terms involve expectations over Q(Yi), ∀i, and Q(Yi, Yj), ∀i, j ∈ Edges. Computing these expectations
requires inference over the full model Q. Our interest in the canonical parameterization was to develop
a decomposable learning method which avoids inference over the full model; one might argue that, if
we commit ourselves to performing inference, then we might as well optimize the symmetric KL (or
non-symmetric KL) directly.

2.7 Discussion

Using pseudolikelihood (MPLE) and composite likelihood (MCLE), we proved the first finite sample
complexity bounds for learning parameters of general MRFs and CRFs. For certain classes of models,
these bounds constitute PAC bounds as well. Our bounds are written in terms of problem-specific con-
stants, and through empirical analysis, we showed that these constants accurately determine the relative
statistical efficiency of MLE, MPLE, and MCLE. Our small-scale tests give guidance for choosing MCLE
structure in practice, even when our bounds’ constants may not be computed.

We also helped to elucidate the relation between MPLE and the canonical parameterization—the one
previous method capable of PAC-learning a general class of high-treewidth models. Our algorithmic
improvements have moved the method one step closer to practicality, and our theoretical observations
indicate the potential for usefulness in the future.

Most importantly, our work has demonstrated the potential for optimizing the trade-offs between sample
complexity, computational complexity, and potential for parallelization when using MCLE for parameter
learning. At one extreme, MLE has essentially optimal sample complexity, but MLE can have very high

37

computational complexity and be difficult to parallelize. At the other extreme, MPLE has relatively high
sample complexity, but low computational complexity and very simple parallelization. Ranging between
MLE and MPLE is MCLE, which offers a very flexible class of estimators. On many models, smart
choices of MCLE component structures can achieve sample complexity close to MLE, computational
complexity close to MPLE, and simple parallelization. Moreover, the potential for joint or disjoint opti-
mization offers another method for tuning these trade-offs. By tailoring these choices to our model and
data, we can optimize these trade-offs and make learning parameters much more scalable.

2.8 Future Work

We divide our future work into three areas: (a) ideas stemming from our work on pseudolikelihood and
composite likelihood, (b) extensions to our work on the canonical parameterization, and (c) extensions of
our learning methods to alternate learning settings.

2.8.1 Pseudolikelihood and Composite Likelihood

In this section, we mention future work specific to pseudolikelihood and composite likelihood. We discuss
much broader ideas in Ch. 6.

Automated choice of MCLE structure: In our examples, we choose the structure of our composite likeli-
hood estimators by hand, using our expert knowledge about the structure of the graph and the correlations
between random variables. It should be possible to choose structures automatically according to both
the graph structure (which is given) and the correlations (which may be inferred from data). Choosing a
structure could be phrased as graph partitioning, with the constraint that each partition have low treewidth.
Using the graph structure would be most challenging on natural graphs with high-degree nodes, high con-
nectivity (and low diameter), and irregular structure. Using correlations would be particularly interesting
since estimating correlations would require a model of the distribution; thus, a good option might be a
bootstrapped approach which uses a rough estimate of the distribution to choose a good estimator, which
is in turn used to re-estimate the distribution.

Partly disjoint optimization: As parallel computing becomes more mainstream, more analysis of disjoint
optimization could prove valuable. Currently, our analysis considers completely joint or disjoint optimiza-
tion; of the two methods, joint optimization achieves lower sample complexity, while disjoint optimization
is much easier to parallelize. Analyzing intermediate options, with limited communication between oth-
erwise disjoint subproblems, might allow us to optimize this sample complexity–parallelization trade-off.
A small amount of communication would not limit parallelism much but might greatly reduce sample
complexity (i.e., improve accuracy for a given sample size). An approach using the Alternating Direction
Method of Multipliers (ADMM) might work well. (For ADMM, see generally Boyd et al. [2011a].)

Combined analysis of learning and inference: We analyzed learning with the goal of recovering pa-
rameters. However, in practice, users are generally most interested in the performance of the model when
answering test-time queries, i.e., running inference. Some work [Wainwright, 2006] has indicated that
the same type of inference should be used during both learning and test-time. It is currently unclear
what type of inference would be optimal with pseudolikelihood and composite likelihood, though it is
easy to draw intuitive parallels with Gibbs sampling and structured Gibbs sampling, respectively [Asun-

38

cion et al., 2010]. A joint analysis of learning and inference might inform us of the optimal method for
inference.

Dependence of bounds on eigenspectra; Analyzing non-identifiable models: Our MLE bounds cur-
rently depend on the minimum non-zero eigenvalue of the Hessian (of the loss at the target parameters).
The use of the minimum is a worst-case choice which helps with our analysis. It might be possible to
improve our analysis to depend on some combination of all eigenvalues; intuitively, low curvature of the
objective in one direction (indicated by a small minimum eigenvalue) should only hurt our parameter es-
timates in that direction, not in other directions (corresponding to the other, larger eigenvalues). Such an
analysis might also let us prove results for non-identifiable models.

Behavior of eigenspectra of various models: For small models, we can explicitly compute the eigenval-
ues required by our bounds. However, general rules dictating the behavior of the eigenvalues w.r.t. model
structure, size, and parameters and w.r.t. estimator structure would be invaluable. Such rules would aid
in automatically choosing estimator structures for new models and in proving PAC learnability of model
classes.

Theoretical comparison with other methods: The relationships between many of learning methods
discussed in Sec. 2.1 are unclear. For those methods which have consistency results but not finite sample
complexity results, an analysis similar to ours might be possible, and it would aid in understanding these
methods’ relative performance.

Empirical comparison with other methods: In this work, we have focused on comparing MLE with
MPLE and MCLE, rather than proving that MPLE and MCLE are better than any other learning method.
Many authors have already proven MPLE and MCLE to be empirically competitive with other meth-
ods. However, since we have been able to show that carefully chosen MCLE structures can significantly
outperform naively chosen structures, a broad comparison of carefully structured MCLE with additional
learning methods would be valuable.

Model misspecification: Our analysis assumes that the model is well-specified. Generalizing our work to
misspecified models would be valuable for understanding how to choose MCLE structures in real-world
applications, in which we often cannot assume that the model is well-specified.

2.8.2 Canonical Parameterization

In this section, we mention future work specific to the canonical parameterization. We discuss much
broader ideas in Ch. 6.

Sample complexity bounds: As discussed in Sec. 2.6.7, the canonical parameterization might be useful
for proving error bounds (or sample complexity bounds) for learning methods such as pseudolikelihood.
It is not clear how these bounds would compare to those developed in Sec. 2.3, but we suspect the bounds
would look very different and might shed more light on the performance of pseudolikelihood on different
types of models.

Algorithmic improvements: We proved that the canonical parameterization generalizes pseudolikelihood
(MPLE) in a sense: certain algorithmic choices make the canonical parameterization equivalent to MPLE.
The key algorithmic choices are how local conditional probabilities are estimated and how the estimates
are averaged together to compute a single estimate of the full distribution. Other algorithmic choices could

39

potentially improve upon MPLE and would be interesting to explore. (However, we note that our empirical
tests have not yet revealed cases in which the canonical parameterization can outperform MPLE.)

Improving the canonical parameterization: If the canonical parameterization proves useful for sample
complexity bounds (or an algorithm), it could be further improved. Our current formulation of the canon-
ical parameterization handles large factors (factors involving many Y variables) inefficiently. A factor
φ(YCj , XDj) in the true structure generates one canonical factor for every subset of Cj . With a single
large factor, it is simple to show that all but two of these exponentially many canonical factors cancel out,
greatly simplifying the canonical parameterization. It might be possible to use careful counting arguments
to eliminate this exponential blowup in more general cases.

Relation to other methods: Sec. 2.6.5 compared the canonical parameterization with pseudolikelihood
but left some open questions. Does the canonical parameterization benefit from comparing vs. a reference
assignment? Are there classes of problems in which it will generally outperform pseudolikelihood? Also,
in terms of held-out data log likelihood (in the tests discussed in Sec. 2.6.6), the canonical parameteriza-
tion behaves more similarly to pseudolikelihood when we average over reference assignments and over
ij ∈ C∗j ; is it simply that averaging improves the performance of the canonical parameterization, or does
averaging somehow make it more similar to pseudolikelihood? It would also be interesting to compare
with other learning methods, such as piecewise likelihood [Sutton and McCallum, 2005, 2007], score
matching [Hyvärinen, 2005], and ratio matching [Hyvärinen, 2007].

Model misspecification: Both Abbeel et al. [2006] and our work heavily rely on knowledge of the true
structure, though Abbeel et al. [2006] do give bounds which permit partial misspecification. It would be
interesting to explore empirically how the performance of the canonical parameterization degrades with
model misspecification. Also, Liang and Jordan [2008] showed that the max-pseudolikelihood estimate
degrades with model misspecification faster than the max-likelihood estimate; it would be interesting if
the canonical parameterization could be used to shed light on this behavior.

2.8.3 Alternate Learning Settings

So far, we have discussed methods for scaling learning of parametric CRFs in the supervised setting, in
which all variable values are fully observed in the training data. In this section, we propose extensions
of our work to other settings. The first proposal, nonparametric CRFs, suggests a path for extending the
work to more flexible model representations. The second proposal, semisupervised learning, discusses an
extension to the setting in which some variable values are unobserved.

Nonparametric CRFs

Nonparametric models can permit more flexibility than parametric representations. Rather than assuming
a parametric form of a distribution, such models learn a data-dependent representation. However, the extra
computation generally required by nonparametric learning can make nonparametric CRFs prohibitively
expensive to learn. We propose limiting this expense by applying pseudolikelihood and composite likeli-
hood (Ch. 2) to nonparametric models.

Song et al. [2009, 2010] developed Hilbert space embeddings for constructing and operating on nonpara-
metric representations of marginal and conditional distributions. They demonstrate empirically that the

40

flexibility of nonparametrics permits the learning of more accurate models when the data do not come
from a simple parametric distribution.

The methods from Song et al. [2009, 2010] may be generalized to CRFs and used in MLE training, but
the operations required can be very expensive (though technically polytime) since MLE training requires
running inference many times. We propose to use their nonparametric representations for pseudolikeli-
hood and composite likelihood. A particular challenge is finding a nonparametric representation which
permits simple estimation of pseudolikelihood or composite likelihood components from data, as well as
factor averaging to create a complete model which takes the appropriate nonparametric form.

Nonparametric CRFs have been previously proposed by Lafferty et al. [2004], under the title kernel CRFs.
We propose to use the methods from Song et al. [2009, 2010] since the methods from Lafferty et al. [2004]
implicitly require that the output variables Y be discrete-valued.

Semi-supervised Learning

We propose extending our ideas for composite likelihood (and pseudolikelihood) to the semi-supervised
setting, in which variables may be partially observed. Semi-supervised learning typically requires more
computation than supervised learning, and semi-supervised methods are often posed as global optimiza-
tion problems over the full model (e.g., posterior regularization [K. Ganchev and Taskar, 2010] and gener-
alized expectation [McCallum et al., 2007]). Decomposing the objective might therefore greatly improve
scalability. However, composite likelihood itself may not be directly applicable since its subproblems
involve estimating conditional probabilities; when the variables being conditioned on are only partially
observed, it can be difficult to solve such subproblems in isolation.

41

Chapter 3

CRF Structure Learning

As discussed in Sec. 1.3, research on CRF structure learning is still in a nascent stage, and even recovering
tree structures is an unsolved problem. In this chapter, we discuss initial work exploring this problem of
learning tree structures for CRFs. We begin with tree structures partly for their simplicity and partly since
they permit exact inference at test time. As Shahaf et al. [2009] demonstrate, low-treewidth structures can
produce better results than more general structures which require approximate inference.

Our work centers around generalizing the Chow-Liu algorithm for tree MRFs [Chow and Liu, 1968] to
CRFs. We use the same algorithmic framework: compute edge weights, and choose a maximum-weight
spanning tree. The framework is simple, efficient, and easy to parallelize since the main expense is in
computing the edge weights. We are most interested in settings with large numbers of input variables, for
it is in these settings that the obvious generalization of Chow-Liu breaks down (as shown in Sec. 3.2.1).
To cope with large numbers of input variables, we take advantage of the idea of evidence locality, i.e.,
local structure w.r.t. input variables, where only a small subset of input variables in X participate in each
factor.

Our results so far are mixed: we present one major negative theoretical result (in Sec. 3.2.2) but encour-
aging empirical results (in Sec. 3.4). In Sec. 3.6, we propose several improvements which might help us
sidestep around our negative result.

Our main contributions in this chapter may be summarized as follows:

• Analysis of conditions for recovering tree CRF structures

• Generalization of Chow-Liu for CRFs, via generalized edge weights

Negative theoretical result for the generalized edge weights

Discussion of select edge weights with intuitive motivations

• Empirical tests of select edge weights on synthetic and fMRI data, with good performance

This chapter is based on work initially presented in Bradley and Guestrin [2010].

42

3.1 Related Work

We drew inspiration from several sources. Our work is mostly based upon the Chow-Liu algorithm from
Chow and Liu [1968]. Related methods are used by Friedman et al. [1997] to learn Tree-Augmented
Naive Bayes classifiers and by Shahaf et al. [2009] to learn low-treewidth CRFs; we discuss these works
in Sec. 3.2.1. One of the edge weights we consider (in Sec. 3.3.1) is based on piecewise likelihood [Sutton
and McCallum, 2005].

Concerning structure learning more generally, several heuristic methods have been empirically success-
ful. Torralba et al. [2004] proposed Boosted Random Fields, a method which selects features and structure
using greedy steps to approximately maximize data log likelihood. Schmidt et al. [2008] proposed maxi-
mizing block-`1-regularized pseudolikelihood, which gives a convex program and tends to produce sparse
models. Both methods learn high-treewidth models in general.

As mentioned in Sec. 1.3, structure learning is known to be hard in general [Srebro, 2003]. One of the few
learnability results we are aware of comes from Ravikumar et al. [2010], whose results on learning Ising
MRF structures imply learnability for some classes of Ising CRFs. They use L1-regularized regression
to discover each variable’s neighbors. Lee et al. [2006] take a similar approach, using L1-regularized log
likelihood to learn high-treewidth MRF structures. However, the method from Lee et al. [2006] requires
intractable inference (or approximations without guarantees) during learning since the objective includes
the full likelihood.

Chechetka and Guestrin [2010] proposed the interesting idea of evidence-specific structures for CRFs,
in which a new structure over Y is chosen for each test example (y, x) based on learned correlations
in P (Y|x). Though their method lacks theoretical guarantees, it can improve upon traditional CRFs
in practice. They use a similar Chow-Liu-based algorithmic approach for choosing structures, but they
use global Conditional Mutual Information for edge weights; as we discuss in Sec. 3.2.1, this choice is
not ideal when |X | is large. However, our alternative edge weights may be plugged directly into their
method.

3.2 Efficiently Recovering Tree CRFs

In this chapter, we use the notation for CRFs defined in Ch. 1. We assume we are given an input map-
ping specifying inputsXDj for each possible factor involving YCj . (We briefly discuss methods for feature
selection in Sec. 3.3.5 and give empirical evidence of their efficacy.) For many applications, expert knowl-
edge can provide input mappings (such as in image segmentation, where Y are segment labels and X are
pixels); in other cases, sparsistent methods [Ravikumar et al., 2008] can be used for feature selection. Like
us, Schmidt et al. [2008] and Shahaf et al. [2009] assume pre-specified input mappings.

Since we only learn tree CRFs, we simplify notation. We write Yij ≡ {Yi, Yj}. The inputs for Yi
specified by the input mapping are Xi; likewise, Xij corresponds to Yij . We index factors similarly:
ψi = ψi(Yi, Xi) and ψij = ψij(Yij , Xij). Our goal now is a scalable algorithm for learning tree CRF
structures. We begin by proposing a gold standard and showing it is ideal but impractical.

43

Algorithm 3.1: Tree CRF Structure Learner Template
Input: Dataset D over Y,X ; inputs Xi for each Yi
Initialize G to be the complete graph over Y .
foreach (Yi, Yj) do

In G, set Weight(Yi, Yj) ←− Score(i, j).
return MaxSpanningTree(G)

3.2.1 A Gold Standard

We can define an algorithm analogous to Chow-Liu for generative models [Chow and Liu, 1968] by
showing that the conditional log likelihood of a tree CRF decomposes over the edges (i, j) and vertices i
in the tree T . Let Q be our model and P the true distribution. Using the (optimal) parameters Q(A|B) =
P (A|B),

EP [logQ(Y|X)] =
∑

(i,j)∈T EP [logQ(Yij |X)]

−
∑

i(degi − 1)EP [logQ(Yi|X)]
=
∑

(i,j)∈T IP (Yi;Yj |X) + C,

where subscript P means w.r.t. P , degi is the degree of vertex i, and C is a constant w.r.t. the struc-
ture.

Assuming the global Conditional Mutual Information (CMI) I(Yi;Yj |X) is easy to compute, we can
recover the maximum likelihood model: weight each possible edge (i, j) with I(Yi;Yj |X), and choose
the maximum-weight spanning tree (MST). This method was proposed by Friedman et al. [1997] for
learning Tree-Augmented Naive Bayes classifiers. Unfortunately, as the dimensionality of X grows, this
method quickly becomes intractable. Computing I(Yi;Yj |X) requires an accurate estimate of P (Yij |X)
(or similar quantities); P (Yij |X) can be as expensive to compute and represent as P (Y|X) when the
dimensionalities of Y and X are of the same order. This observation emphasizes the need to parameterize
our model with local inputs Xi ⊂ X , rather than global inputs Xi = X , to ensure scalability w.r.t. X .
1

Ideally, we could retain the efficiency of spanning trees while making use of local inputs in X , i.e.,
only calculating probabilities of the form P (Yij |Xij) conditioned on small sets Xij . With local inputs,
though, the partition function prevents the conditional log probability from decomposing over edges and
vertices:

logP (Y|X) = − logZ(X) +
∑

(i,j)∈T

logψij(Yij , Xij).

Our primary goal is to overcome the intractability of the partition function by deriving a meaningful local
edge score Score(i, j) usable in Algorithm 3.1.

Shahaf et al. [2009] took a similar approach, defining edge scores and maximizing the weight of edges
chosen for a low-treewidth model. However, they used global inputs, with edge scores set to the global
CMI I(Yi;Yj |X). They focused on the second step—maximizing the weight of edges included in the
model—while we focus on better methods for weighting edges. Our work is compatible with theirs; their
algorithm could use our edge scores to learn treewidth-k models.

1If the true model were a tree CRF with local inputs and complexity were ignored, global CMI could recover the true structure,
after which the model could be succinctly parameterized with local inputs. However, if the true CRF were not a tree, it is unclear
whether global CMI would recover the optimal projection onto a tree with local inputs.

44

3.2.2 Score Decay Assumption

We phrase our analysis of edge scores in terms of recovering the structure of tree CRFs. I.e., we assume
the true distribution is representable by a tree CRF. We begin by defining a desirable property for edge
scores.

Definition: If the true model P (Y|X) is a tree T , the Score Decay Assumption (SDA) states that, for
any edge (i, j) ∈ T , if a path in T of length > 1 between k, l includes (i, j), then Score(i, j) >
Score(k, l).

Intuitively, the SDA says the score between vertex pairs decays with distance. Yet this is less strict than
requiring, e.g., that the assumption hold regardless of whether (i, j) is an edge in T ; thus, the SDA does
not rely on comparing pairs of edges not in T . This condition is necessary and sufficient for recovering
trees.

Theorem 3.2.1. Suppose P (Y|X) is representable by a tree CRF with structure T . The Score Decay
Assumption holds for a score S w.r.t. P iff Algorithm 3.1 using score S can recover T .

Proof: While building a maximum spanning tree over Y by Kruskal’s Algorithm [Kruskal, Jr., 1956], say
we add edge (k, l) /∈ T . Let pathkl be the path between k, l in T . There exists an edge (i, j) ∈ pathkl not
yet added, so Score(i, j) < Score(k, l), violating the SDA. I.e., we add an edge not in T iff the SDA is
violated, so Algorithm 3.1 recovers T iff the SDA holds. �

Recall that we wish to use local scores S(i, j) = f(Yij , Xij) for scalability. We make a simplifying
assumption about the input mapping: a factor involving Yij depends on Xi ∪Xj (not arbitrary Xij). This
assumption makes our methods less general but more practical. (E.g., feature selection requires inputs for
each of |Y| outputs, rather than for

(|Y|
2

)
possible edge factors.) However, we note that our approach still

permits the use of global inputs, i.e., inputs which are included in all factors. Schmidt et al. [2008] make
use of a mix of global and local inputs, while Shahaf et al. [2009] use only global inputs. We now define
a general class of local scores.

Definition: The Local Linear Entropy Scores are scores Score(i, j) representable as linear combinations
of entropies over subsets of {Yi, Yj , Xi, Xj}. (The entropy of a distribution P (X) is defined as H(X)

.
=

EP (X) [− logP (X)]. The conditional entropy of a distribution P (Y |X) (when there is an implicit corre-
sponding distribution P (X)) is defined as H(Y |X)

.
= EP (X)

[
EP (Y |X) [− logP (Y |X)]

]
.)

This class of scores includes, for example, the local Conditional Mutual Information I(Yi;Yj |Xij) =
H(Yi|Xij)+H(Yj |Xij)−H(Yij |Xij) we consider in Sec. 3.3.2. Unfortunately, the Local Linear Entropy
Scores are insufficient in general for recovering tree CRFs, as the following theorem demonstrates.

Theorem 3.2.2. Assume that the edge score S is symmetric, i.e., S(i, j) = S(j, i). Even if we assume the
class of distributions we are learning:

• are representable by tree CRFs,

• obey the input mapping, i.e., that if the true model has edge (i, j), a factor involving Yij involves no
more inputs than Xij ,

• and have no trivial factors, i.e., that no factors are deterministic or effectively absent,

then every Local Linear Entropy Score S violates the Score Decay Assumption for some models from this
class, even with exact entropy estimates.

45

Proof Sketch: Since conditional entropies equal a difference between non-conditional entropies, any
Local Linear Entropy Score S(i, j) may be written as

w ·
(
H(Yi) +H(Yj), H(Xi) +H(Xj), H(Yij), H(Xij),
H(Yi, Xi) +H(Yj , Xj), H(Yi, Xj) +H(Yj , Xi),
H(Yi, Xij) +H(Yj , Xij), H(Yij , Xi) +H(Yij , Xj),
H(Yij , Xij)

)
(This has all non-conditional entropies, grouped since S is symmetric.) The proof considers a list of
cases using these observations: (1) Since tree CRFs generalize trees (where X = ∅), the score must
(approximately) reduce to the mutual information S(i, j) = I(Yi;Yj) when X = ∅. (2) Since we can
have arbitrary factors over X , the score must not be exactly S(i, j) = I(Yi;Yj). (3) We can introduce
simplifying constraints by considering models for which the inputs X are conditionally independent given
the outputs Y .
These constraints allow us to prove that, for certain classes of distributions, we require S(i, j) ≈ I(Yi;Yj),
but that such a score fails for other classes. �

3.3 Heuristic Scores

Despite this negative result, we are able to identify certain Local Linear Entropy Scores which are intuitive
and have desirable theoretical properties. Though the scores violate the Score Decay Assumption in
general, they are very successful empirically (Sec. 3.4).

3.3.1 Piecewise Likelihood

We want to base our scores upon the conditional log likelihood, which does not decompose over edges
because of the partition function Z(X). Much research aims at handling partition functions tractably.
We frame our analysis in terms of one such work: piecewise likelihood [Sutton and McCallum, 2005,
2007].

Piecewise likelihood approximates the log likelihood by upper-bounding Z(X). The bound effectively
divides Z(X) into one term for each factor, permitting learning each factor’s parameters independently.
Specifically, the piecewise likelihood objective `PW is

`PW (Y|X) =
∑
j

logψj(Yj , Xj)− Zj(Xj) , (3.1)

where Zj(Xj) is a local partition function which normalizes Pj(Yj |Xj) ∝ ψj(Yj , Xj) to be a distri-
bution. Sutton and McCallum [2005] prove that logP (Y|X) ≥ `PW (Y|X), so maximizing piecewise
likelihood maximizes a lower bound on the log likelihood. Sutton and McCallum [2005, 2007] apply
this approximation to parameter learning for Markov random fields and CRFs, achieving fast learning
and high accuracy. For pairwise models, if we combine factors with their Z terms, piecewise like-
lihood becomes

∑
(i,j) logP (Yij |Xij), where this local conditional distribution is modeled using only

the factors whose domains are in Yij ∪ Xij . This Local Linear Entropy Score is usable in Alg. 3.1:
S(i, j) = EP [logP (Yij |Xij)].

46

!"# !"# !$# !%#

&"# $"# &$# &%#

%%%#

Figure 3.1: Counterexample for piecewise likelihood and local CMI: P (Y,X) has a comb structure, with
weak pairwise factors everywhere except for one strong factor ψ(Y2, X2).

However, piecewise likelihood is a poor edge score. If a pair (Yi, Xi) share a strong factor, piecewise
likelihood weights will likely result in a star structure over Y with Yi at the center, as in the following
example.

Example 1: Consider Figure 3.1’s model. (Y2, X2) has a strong factor so that H(Y2|X2) ≈ 0. The score
for any edge (2, i) is:

E [logP (Y2,i|X2,i)] = −H(Y2,i|X2,i)

= −H(Yi|X2,i)−H(Y2|Yi, X2,i)

≈ −H(Yi|X2,i) > −H(Yi|Xi)

All other Xj participate in weak factors, so −H(Yi|Xi) ≈ −H(Yi|Xij) > −H(Yij |Xij). Even if edge
(Y2, Yi) is not in the true model and (Yi, Yj) is, we will score (Y2, Yi) above (Yi, Yj). This behavior
appeared often in our synthetic experiments. �
Nevertheless, piecewise likelihood is a useful approximation which helps tie our two proposed edge scores
to the ideal but intractable global CMI.

3.3.2 Local CMI

The first Local Linear Entropy Score we select is a local version of global CMI I(Yi;Yj |X). The local
CMI is:

I(Yi;Yj |Xij) = EP [logP (Yij |Xij)− logP (Yi|Xi,j)− logP (Yj |Xi,j)] .

The local CMI score is interpretable as the piecewise likelihood (first term in the expectation), minus
correction terms for the edge’s endpoints (second and third terms in the expectation). Intuitively, these
corrections discount interactions between each Yi and X . We can also interpret local CMI as a bound on
the likelihood gain of a tree CRF over a disconnected model.

Proposition 3.3.1. Let QT (Y|X) be the projection of the true distribution P (Y|X) onto tree structure
T w.r.t. P (X), and let Qdisc(Y|X) ≡

∏
i P (Yi|Xi) be the projection onto the disconnected model. The

local CMI score CMI(i, j) for QT bounds the likelihood gain 2:

EP [logQT (Y|X)− logQdisc(Y|X)] ≥
∑

(i,j)∈T

CMI(i, j)

2Both piecewise likelihood and local CMI have bounds relating them to the tree CRF log likelihood; we can show that neither
bound is strictly better for all distributions.

47

Proof: Choose a topological ordering of Y in T with root Y1. Let YPai be Yi’s parent. Entropies and
expectations are defined w.r.t. Q′(Y,X) ≡ QT (Y|X)P (X).

E[logQT (Y|X)− logQdisc(Y|X)]
=
∑

iH(Yi|Xi)−H(Y|X)
=
∑

iH(Yi|Xi)−H(Y1|X)−
∑

i>1H(Yi|YPai , X)
= H(Y1|X1)−H(Y1|X) +

∑
i>1H(Yi|Xi)−H(Yi|YPai , X)

≥ H(Y1|X1)−H(Y1|X1) +
∑

i>1H(Yi|Xi,Pai)−H(Yi|YPai , Xi,Pai)
=
∑

i>1H(Yi|Xi,Pai) +H(YPai |Xi,Pai)−H(Yi,Pai |Xi,Pai)
=
∑

(i,j)∈T CMI(i, j) �

Like piecewise likelihood, local CMI can perform poorly if a pair (Yi, Xi) has a strong factor.

Example 2: Consider again Figure 3.1’s model, where ψ(Y2, X2) is strong enough that H(Y2|X2) is
small. Local CMI gives a small score to any edge with Y2 since

I(Y2;Yj |X2,j) = H(Y2|X2,j)−H(Y2|Yj , X2,j) ≈ 0.

Since the score for the false edge (Y1, Yn) does not condition on X2, it could be much higher than the
score of the true edges (Y1, Y2), (Y2, Y3). Note that this is a separate issue from identifiability; with local
inputs, it is vital that we connect Y1, Y2 and Y2, Y3. �

However, local CMI performs fairly well in practice.

3.3.3 Decomposable Conditional Influence

To overcome the above counterexample, we propose a final Local Linear Entropy Score dubbed the De-
composable Conditional Influence (DCI):

DCI(i, j) ≡ EP [logP (Yij |Xij)− logP (Yi|Xi)− logP (Yj |Xj)] .

The first term in the expectation is the piecewise likelihood (as for local CMI), but the second and third
equal the edge’s endpoints’ scores in the disconnected model Pdisc(Y|X) ≡

∏
i P (Yi|Xi), giving the

following result:

Proposition 3.3.2. When building a spanning tree T , if we add edge (i, j) and T does not yet contain
edges adjacent to i, j, then DCI is an exact measure of the likelihood gain from adding edge (i, j).

Moreover, DCI succeeds on Figure 3.1’s counterexample for piecewise likelihood and local CMI.

Example 2, continued: The DCI edge scores are:

DCI(1, 2)
= −H(Y1,2|X1,2) +H(Y1|X1) +H(Y2|X2)
≈ −H(Y1|X1,2) +H(Y1|X1)

DCI(1, n)
= −H(Y1,n|X1,n) +H(Y1|X1) +H(Yn|Xn)
= [H(Y1|X1)−H(Y1|X1,n)] + [H(Yn|Xn)−H(Yn|Y1, X1,n)]

Since Y1, Yn are far apart, the two terms in DCI(1, n) are much closer to 0 than the sum in DCI(1, 2).
�
DCI performs very well in practice (Sec. 3.4.1).

48

3.3.4 Sample Complexity

Though Local Linear Entropy Scores violate the Score Decay Assumption in general, it is instructive to
consider the sample complexity if the assumption is met.

Theorem 3.3.3. Let Y,X be discrete and P (Y|X) be representable by a CRF with tree structure T .
(Assume w.l.o.g. that Xi is a single variable; we can merge multiple variables into a new variable of
higher arity.) Let all variables have arity ≤ R. Let |Y| = n. Assume a Local Linear Entropy Score S
meets the Score Decay Assumption by ε; i.e., for each edge (i, j) ∈ T on the path between k, l, S(i, j)−
S(k, l) > ε.
To recover the tree with probability at least 1− γ, it suffices to train on a set of i.i.d. samples of size

O

(
R8

ε2
log2

(
R

ε

)(
log n+ log

1

γ
+ logR

))

Proof: We use this result on the sample complexity of estimating entropies from Höffgen [1993]: The
entropy over k discrete variables with arity R may be estimated within absolute error ∆ with probability
≥ 1− γ using O

(
R2k

∆2 log2
(
Rk

∆

)
log
(
Rk

γ

))
i.i.d. samples (and time).

Local Linear Entropy Scores may be represented by a constant number of entropies over ≤ k = 4 vari-
ables. With

(
n
2

)
possible edges, we must compute O(n2) entropies. To ensure estimates of scores order

edges in the same way as the true scores, we must estimate scores within error ∆ = ε/2. These values,
Hoffgen’s result, and a union bound complete the proof. �

This theorem makes 2 key predictions: 1) sample complexity will increase only logarithmically in n =
|Y|, and 2) high arityR drastically increases sample complexity, indicating the importance of local inputs.
Both predictions are born out by our empirical results.

3.3.5 Feature Selection

We have assumed we are given inputs Xi for each Yi. If this mapping is unavailable, we recommend
`1-regularized regression. Ravikumar et al. [2008] present sparsistent methods which, given certain as-
sumptions, can recover the neighbors of variables in the model. Though their guarantees are asymptotic
in sample size, they show the method works empirically.

To choose inputs for Yi using `1-regularized regression, one could use two methods. The unconservative
method (choosing larger setsXi) regresses Yi ∼ X . The conservative method regresses Yi ∼ X ∪(Y\Yi).
Sparsistency results indicate that, if P (Y|X) is representable by a tree CRF, the conservative method may
be better. However, the conservative one might be too selective if the true structure is not a tree. In our
fMRI experiments, we found computational complexity and relative performance favor the conservative
method.

3.4 Experiments

We first use synthetic data to compare local CMI and DCI against other CRF learning methods: piece-
wise likelihood, global CMI, and block-`1-regularized pseudolikelihood [Schmidt et al., 2008]. (We omit

49

!"# !"# !$# !%#

&"# $"# &$# &%#

%%%#

!"# !"# !$# !%#

&"# $"# &$# &%#

%%%#

Figure 3.2: Tractable chain structure for P (Y,X) used in synthetic experiments. The dotted edges rep-
resent cross-factors. This model is tractable since the structures of P (Y|X) and P (X) match: both are
chains with corresponding variables Yi, Xi in the same order.

results from piecewise likelihood since it does poorly.) We also tested two unstructured models: the dis-
connected CRF with global inputs P (Y|X) =

∏
i P (Yi|X) and the disconnected CRF with local inputs

P (Y|X) =
∏
i P (Yi|Xi). Based on these results, we tested the best methods on the larger-scale fMRI

application.

3.4.1 Synthetic Models

We tested a wide variety of synthetic models over binary variables; the models varied as follows:
Chains vs. trees: Chains have joint distributions P (Y,X) representable by ladders composed of cliques
(Yi, Yi+1), (Xi, Xi+1), (Yi, Xi). Trees are the natural generalization, generated using non-preferential
random attachment [Nakazatoa and Arita., 2007]. We tested with and without cross factors ψ(Yi, Xi+1).
Tractable vs. intractable joint models P (Y,X): For our tractable models, P (Y,X) may be sampled from
directly. For our intractable models, P (X) and P (Y|X) are tractable, but P (Y,X) is not (but may be
sampled via x ∼ P (X), y ∼ P (Y|X = x)).
Associative vs. random factors: Associative factors set ψ(A,B) = exp(s) if A = B and ψ(A,B) =
1 if A 6= B, where s is a factor strength. Random factors have each value logψ(a, b) sampled from
Uniform[−s, s]. We set strengths s separately for Y-Y, Y-X, and X-X factors. For associative factors,
we tried both fixed and alternating positive and negative strengths.

These models have natural input mappings from Yi to Xi which we gave our learners access to.

Exact Scores

We tested exact scores on simple models to illuminate domains in which local CMI and DCI succeed.
Figure 3.3 shows model recovery results for length-10 chains. DCI outperforms local CMI when Y-X fac-
tors are stronger (matching the counterexample in Figure 3.1) and when Y-Y factors are weak. Peculiarly,
local CMI does better when X-X factors are strong. These trends were similar for most models we tested,
though local CMI did significantly better without alternating positive and negative factors.

Fig. 3.4 compares the magnitudes of the edge scores for local CMI and DCI for an example test. The
median magnitude of DCI scores is about 10 times higher than that of local CMI. Since scores for these
simple length-10 chains go as low as 10−8, this difference could indicate more danger of numerical insta-
bility for local CMI.

Tests with Samples

Our next tests used samples from the synthetic models. For structure learning, we computed P (Yi, Yj |XC)
where XC is small using tables of counts. For large sets XC , we used `2-regularized logistic regres-

50

2 4 6 8 10

2

4

6

8

10

Y
!

Y
 p

o
te

n
ti
a
l
s
tr

e
n
g
th

Y!X potential strength
2 4 6 8 10

2

4

6

8

10

Y
!

Y
 p

o
te

n
ti
a
l
s
tr

e
n
g
th

Y!X potential strength

2 4 6 8 10

2

4

6

8

10
Y
!

Y
 p

o
te

n
ti
a
l
s
tr

e
n
g
th

Y!X potential strength
2 4 6 8 10

2

4

6

8

10

Y
!

Y
 p

o
te

n
ti
a

l
s
tr

e
n

g
th

Y!X potential strength2 4 6 8 10

2

4

6

8

10

Y
!

Y
 p

o
te

n
ti
a
l
s
tr

e
n
g
th

Y!X potential strength

!"#$

#"#$

#"%$
!
"
#$

%
!
#$

&'()$*)+,-)*.$ &'()$*/0120($

Figure 3.3: Local CMI vs. DCI with exact scores. Chains with associative factors, cross factors, alternat-
ing +/− strengths. Plots: varying magnitudes of Y-Y and Y-X strengths for fixed magnitude 2 for X-X
(in log space). “Edge recovery” is the fraction of true edges recovered; “edge ranking” is the fraction of
(true, false) edge pairs with the true edge ranked above the false. |Y| = |X | = 10.

sion. We chose regularization parameters separately for every regression during structure learning, which
outperforms fixed regularization. We smoothed estimates of P (A|B = b) with one extra example per
a ∈ V al(A).

For parameter learning, we used conjugate gradient to maximize the `2-regularized data log likelihood.
For both structure and parameter learning, we chose regularization parameters via 10-fold cross-validation,
testing 10 values between .001 and 50 (on a log scale). Global CMI has a natural parameterization with
factors P (Yi, Yj |X), but to be fair, we switched to factors with local inputs ψ(Yi, Yj , Xij) during param-
eter learning, which gave higher performance.

We tested the block-`1-regularized pseudolikelihood method from Schmidt et al. [2008] using their im-
plementation of structure and parameter learning and inference (via loopy belief propagation).

Figures 3.5 and 3.6 show results for tree CRFs with intractable joints P (Y,X), associative factors with
alternating factors (Y-Y, Y-X, X-X alternating between±4,±2,±1, respectively, in log space), with cross
factors. “Test accuracy” is 0/1 (predicting all of Y or not). Training time includes cross-validation for
choosing regularization for structure but not parameter learning. Figure 3.5 compares varying training set
sizes, while Figure 3.6 varies the model size.

In both, DCI consistently outperforms other methods in recovering true edges, except for small sample
sizes. Global CMI is the next most competitive, overtaking DCI in accuracy with enough training data.
However, global CMI becomes prohibitively expensive as the training set and model sizes increase. Like
DCI, local CMI is tractable, but it under-performs DCI.

These tests are difficult for the Schmidt et al. [2008] method, for it learns general CRFs, not tree CRFs.
The plots omit log likelihood for Schmidt et al. since it is intractable to compute, though it could be
approximated via a projection. We omit results from other models for lack of space. In general, DCI

51

!15 !10 !5 0
0

1000

2000

3000

ln(edge score)

DCI

CMI

!"#$%&#%'()"*%+'

Figure 3.4: Histogram of the edge score magnitudes of local CMI and DCI for one of the tests in Figure
3.3. The x-axis uses log with base e. The relative magnitudes of the two score types indicate that local
CMI may be more likely to suffer from numerical instability than DCI.

performs best, especially with large models and random factors.

Though local CMI and DCI do not obey the Score Decay Assumption in general, we observed that they
approximately follow it. Figure 3.7 plots SDA violation for consecutive triplets (i, j, k) in the true CRF,
measured as (1/2)[(S(i, k)−S(i, j))+(S(i, k)−S(j, k))]. SDA violation and edge recovery are strongly
anti-correlated.

3.4.2 fMRI

We next applied our CRF learning methods to an fMRI application from Palatucci et al. [2009]. The
learners takes inputs X which are voxels (3-D pixels) from fMRI images of test subjects’ brains and
predicts a vector Y of semantic features which describe what the test subject is thinking of (e.g., “Is it man-
made?”; “Can you hold it?”). This application is much more challenging than our synthetic experiments.
After pre-processing, their dataset has 60 examples (objects), with |Y| = 218 and |X | = 500, for each of
9 test subjects. Palatucci et al. [2009] gives more details.

Given the success of DCI in synthetic tests, we chose it for the fMRI data. Y and X are real-valued, so
we used conditional Gaussian factors ψ(y, x) = exp(−(1/2)(Ay − (Cx + b))2, where y, x are vectors.
This parameterization is similar to that of Tappen et al. [2007], though they do not do general parameter
learning, and it permits unconstrained optimization. 3 We regularized A and C, b separately, choosing
regularization via 10-fold cross validation (CV) on values between .0001 and 30 (in a grid in log space).
Because of the expense of CV, we ran CV on test subject 0 and used the chosen regularization for subjects
1-8.

With no natural input mapping, we used `1-regularized regression to do feature selection. To decrease the
number of parameters (for both computational and statistical benefits), we tried two methods: CRF 1: We
chose ≤ 10 highest-weight inputs per Yi, accounting for 1/5 of the regression weights on average. To use
all of X without increasing complexity, we added fixed factors ψ(Yi,X) = P (Yi|X), ∀i.

3We technically must constrain A so that ATA is invertible, but this was not a problem in our tests.

52

100 200 300 400 5000.4

0.6

0.8

1

pe
r−

la
be

l t
es

t a
cc

ur
ac

y

training examples

DCI
CMI−local
CMI−global
Local Disconnected CRF
Global Disconnected CRF
Schmidt et al.
True Model

Figure 3.5: Synthetic data: Varying training set size. Tree CRFs P (Y|X) with associative factors. |Y| =
|X | = 40. 1000 test examples. Averaged over 10 models/random samples; error bars (very small) show 2
standard errors.

CRF 2: We chose ≤ 20 inputs per Yi; we added the same fixed factors. After structure learning, we
parameterized edge factors to be independent of X .

Palatucci et al. [2009] test zero-shot learning, which permits predictions about classes not seen during
training. After predicting semantic features Y from images X , they use hand-built “true” Y vectors to
decode which object the test subject is thinking of. For testing, they use leave-2-out CV: Train on 58
objects; predict Y for 2 held-out objects i, j. Object i is classified correctly if its predicted Ŷ(i) is closer
in `2 norm to its true Y(i) than to the true Y(j).

We used the same setup, scoring using their accuracy measure, squared error of predicted Y , and log prob-
ability logP (Y|X). Palatucci et al. [2009] use ridge regression Yi ∼ X , ∀i, equivalent to a disconnected
CRF with global inputs; we used this as a baseline.

Figure 3.8 compares disconnected and tree CRFs. The discrepancy between the 3 performance metrics is
remarkable: Tree CRFs are best at predicting Y w.r.t. log likelihood and squared error (before decoding),
but disconnected CRFs are best w.r.t. the accuracy metric (after decoding). This behavior could be caused
by decoding via Euclidean distance and not accounting for the relative importance of each Yi. We also
tested decoding by predicting the more likely of the two held-out objects’ Y vectors, but this performed
worse with all learning methods. Learning this decoding Y −→ objects might avoid this problem and be
a valuable addition to the zero-shot learning framework.

3.5 Discussion

Combining a maximum spanning tree algorithm with carefully chosen edge scores allows us to learn
expressive models while avoiding the costliness of many structure learning methods. Despite our negative

53

100 200 300 400 5000.4

0.6

0.8

1

pe
r−

la
be

l t
es

t a
cc

ur
ac

y

training examples

DCI
CMI−local
CMI−global
Local Disconnected CRF
Global Disconnected CRF
Schmidt et al.
True Model

Figure 3.6: Synthetic data: Varying model size (|Y| = |X |). Tree CRFs P (Y|X) with associative factors.
50 training, 1000 test examples. Averaged over 10 models/random samples; error bars (very small) show
2 standard errors.

result for Local Linear Entropy Scores, local CMI and DCI scores can often recover the edges of tree
CRFs.

Our structure learning work follows the theme of decomposition from our work on parameter learning, but
further work will be needed to prove results about trade-offs between sample complexity, computation,
and parallelization. We discuss ideas for improving our method in the next section.

3.6 Future Work

Although no Local Linear Entropy Score (LLES) (Sec. 3.2.2) suffices for all models, a fixed LLES might
suffice for useful subclasses of models. Analysis demonstrating such subclasses of tree CRFs which are
recoverable via fixed local scores would be worthwhile.

Several internal algorithmic improvements could be useful. In our tests, parameter learning was a bot-
tleneck. Making use of our work on scalable parameter learning from Ch. 2 and parallel optimization
from Ch. 4 would be very useful for future tests. (Our work on structure learning preceded these other
works.) Also, we currently estimate entropies by estimating probability distributions and then computing
the entropies. Better entropy estimates which avoid probability estimation would likely improve perfor-
mance.

Our results on structure learning so far are mixed. While the synthetic results strongly support the use
of LLESs for learning tree structures, the fMRI results are weaker. We propose improvements to our
method which may help on real-world problems: choosing a data-specific LLES (Sec. 3.6.1) and learning
evidence locality (Sec. 3.6.2). We also propose an extension to more general models (Sec. 3.6.3).

54

0 5 10 15 20 25
!1

!0.5

0

0.5

1
!"#$%&'()*+),(

")$&-)")*(

.-)"#+)(

/0.(-1&2#%&'(

3&$#2(456(

78(9),:(5&*)2,;(,&":)*(

0 5 10 15 20 25
!1

!0.5

0

0.5

1

!"#$%&'#()*%+&,#&)-'%*#

./0#

1-234)5#%*6%&#

-%3)7%-%*#

87%-26%#

9.8#7:)+24)5#

Figure 3.7: Score Decay Assumption violation vs. edge recovery on 24 models: (|Y| = 10, 15, 20) ×
(with/out cross factors)× (2 associative factor types, 2 random). SDA violation averaged over consecutive
triplets. For edge recovery, up=better; for SDA violation, down=better. 50 train exs. Tests averaged over
10 samples. Tractable P (Y,X).

1 2 3 4 5 6 7 8
0

1000

2000

3000

Subjects

T
ra

in
in

g
 t
im

e

data1

data2

data3

data4

data5

data6

!"#$%&&'$(')*+,-*

+,-*.*

+,-*/*

!"#$%&&'$(')*+,'-.*

/01*2*

/01*3*+4"56(.*

Figure 3.8: fMRI results. Error bars are 2 standard errors long. CRF structure and parameter learning
with fixed regularization took only about 2-3 times as long as closed-form leave-one-out cross validation
for ridge regression.

3.6.1 Learning Score Functions

Theorem 3.2.1 and Theorem 3.2.2 indicate that the ideal LLES (edge score) is problem-dependent. Se-
lecting a score using training data might therefore produce better results. We sketch two approaches for
selecting LLESs.

Approach 1: Our first approach is sketched in Alg. 3.2. We are given a set of trees, as well as a method
for estimating the importance of each edge in a tree. This importance can depend on the entire tree and
could be, e.g., the change in the log likelihood of the model from removing that edge. For each edge, we
compute this importance, along with the local entropy terms used in LLESs. We then use regression to
learn a LLES which predicts the edge importances from the entropy terms.

Many methods could be used to choose the set of trees given to Alg. 3.2:

• We could sample random trees. Alg. 3.2 would use equal weights for each tree.

• We could learn a mixture of trees via, e.g., the method for boosting mixtures of trees from Rosset
and Segal [2002]. (Their work extends easily to CRFs.) Alg. 3.2 could make use of the mixture
weights.

• We could iteratively construct a set of tree structures, alternating between re-learning a LLES and
choosing a new tree structure.

55

In all of these methods, we would need to explore the very large space of tree structures.

Algorithm 3.2: Learn Local Linear Entropy Score (LLES) from Structures
Input: Dataset over (Y,X); weighted set of tree CRFs {Qk(Y|X)}k
foreach k do

foreach Edge (Yi, Yj) in tree Qk do
Create a sample (A = a,B = b), with a = Importance(Yi, Yj , Qk) and b = LLES
entropies, weighted by Qk’s given weight.

Regress A ∼ B using the generated samples to get a LLES S.
return LLES S

Approach 2: Our second approach is based on the observation that the LLES weights (i.e., the weight
given to each local entropy in the LLES) are essentially auxiliary variables to aid in our optimization. We
could try to pose the problem of learning an LLES and a structure as a joint optimization with a single
objective. Our ideal objective would be the likelihood of our structure, which is in turn a function of the
LLES. This second function (from LLES to structure) uses the max-weight spanning tree algorithm, and
we would likely need to replace this non-convex part of our objective with a soft-max formulation. One
possibility would be to use a mixture of trees, where the mixture weights are based on the LLES.

3.6.2 Learning Evidence Locality

Recall that evidence locality refers to the existence of small setsXD ∈ X of variables participating in each
factor. When evidence locality is known, utilizing the locality by parameterizing factors as ψ(YC , XD)
with |XD| � |X| (instead of as ψ(YC , X)) offers clear computational and statistical benefits. When
evidence locality is unknown, as in the fMRI application in Sec. 3.4.2, we would like to learn the locality
from data. Ideally, we could learn the structure and evidence locality via a joint optimization.

Algorithm 3.3: Jointly Learning Structure and Local Evidence
Input: Dataset over (Y,X)
Choose initial local evidence XDi for each Yi.
while not converged do

Learn structure over Y , given fixed local evidence {XDi}i.
Choose new local evidence {XDi}i, given fixed structure over Y .

return Structure, Local evidence

We propose an initial algorithmic framework to test in Alg. 3.3. It is a block coordinate optimization
method which iterates between choosing a structure given fixed local evidence and choosing local evidence
given a fixed structure. The specific methods for learning the structure and for choosing local evidence
may vary.

For the structure learning step, a natural first step would be to try the LLES + MST methods from Alg. 3.1.
These, however, may cause joint learning to converge too quickly; i.e., the choice of a full tree, rather than,
e.g., a forest, may force the optimization into a local optimum. If local optima cause problems, we propose
to generalize our LLES + MST method to learning forests, rather than full trees; we could do so using
the methods which Liu et al. [2010b] used for learning generative forests. Alg. 3.3’s structure learning
step would learn forests, slowly “cooling” the structure learning step in a way analogous to simulated

56

annealing [Kirkpatrick et al., 1983] so that each iteration would add more edges to the forest. Intuitively,
by choosing a smaller set of edges for our structure in intermediate iterations, we would commit less to a
particular structure and could be less likely to get stuck in local optima.

For the evidence selection step, we propose two methods. The first, simpler method would select local
evidence separately for each Yi by regressing Yi on its neighbors in Y (in the fixed structure) and on all of
X , with L1 regularization to encourage sparsity and so select small sets of local evidence. The results of
Ravikumar et al. [2010] on recovering structures via L1-regularized regression provide theoretical moti-
vation for this method. To speed up computation, we could take advantage of our work on parallel sparse
regression in Ch. 4.

The second, more complex method will use max-likelihood CRF parameter learning with each factor in the
fixed structure parameterized using all ofX (i.e., global evidence); again, we will impose L1 regularization
on parameters involved with X variables to encourage small sets of local evidence. This second method
will permit more global choices of local evidence, and it may prove easier to analyze since it optimizes
the very objective (log likelihood) which we are trying to optimize via the joint learning procedure, albeit
with a different regularization term.

These evidence selection methods resemble the work by Schmidt et al. [2008] on structure learning via
optimization of L1-regularized pseudolikelihood. Unlike them, we intend to learn low-treewidth structures
and to use likelihood, not pseudolikelihood, in our optimization.

3.6.3 General Structures

While tree structures permit tractable inference, trees are not always expressive enough for certain appli-
cations. We propose combining our work with several existing works.

Treewidth-k Structures: Shahaf et al. [2009] proposed an efficient method for learning treewidth-k
structures (with small k) which, like our methods, is based on edge weights. Our methods using Local
Linear Entropy Scores for edge weights may be naturally combined with their algorithm for choosing
treewidth-k structures.

L1-Regularized Pseudolikelihood and Composite Likelihood: Schmidt et al. [2008] and Ravikumar
et al. [2010] propose learning PGM structure via L1-regularized pseudolikelihood (optimized jointly and
disjointly, respectively). Our proposed extensions to parallel sparse regression in Ch. 4 could improve
the scalability of their methods during structure learning. Given a learned structure, rather than using the
parameters produced by pseudolikelihood, we could re-learn parameters via a more accurate method such
as composite likelihood. This step could take advantage of our work on structured composite likelihood
in Ch. 2.

57

Chapter 4

Parallel Regression

The CRF parameter and structure learning methods discussed in Ch. 2 and Ch. 3 largely reduce learning to
solving many regression problems. Also, many of the methods for structure learning discussed as related
work (Sec. 3.1) use L1-regularized optimization, where the L1 penalty biases learning towards sparser
solutions (i.e., sparser structures). This chapter discusses work on parallelizing these regression problems
to take advantage of the growing availability of parallel computing platforms.

We present Shotgun, a parallel stochastic coordinate descent method for L1-regularized regression. The
method is based on the existence of data-specific locality in the problem which limits the effect of one
coordinate update on other coordinate updates. This locality allows us to greatly increase parallelism
while keeping total computation essentially unchanged (thus achieving near-linear speedups). We discuss
extensions to the distributed setting in Sec. 4.7, and our overarching future goals (Ch. 6) are heavily based
on ideas from this initial work.

Our main contributions in this chapter may be summarized as follows:

• Shotgun, a simple algorithm for parallel coordinate descent

• Convergence analysis indicating near-linear speedups, up to a problem-dependent limit

Discussion of generalized analysis and learning problems

• Practical implementation of Shotgun and extensive experiments which show:

Our theory (convergence bounds) accurately predict empirical performance.

Shotgun is one of the most scalable sparse regression methods for multicore.

Shotgun achieves significant speedups.

Our work on Shotgun was initially presented in Bradley et al. [2011].

4.1 Introduction

Many applications in machine learning and statistics use L1-regularized models such as the Lasso [Tib-
shirani, 1996] and sparse logistic regression [Ng, 2004]. L1 regularization biases learning towards sparse

58

solutions, and it is especially useful for high-dimensional problems with large numbers of features. For
example, in logistic regression, it allows sample complexity to scale logarithmically w.r.t. the number
of irrelevant features [Ng, 2004]. Sparse solutions have also been a focus of research in the domains of
compressed sensing, digital image processing, and inverse problems in various branches of science. (See
generally Bruckstein et al. [2009].)

Much effort has been put into developing optimization algorithms for L1 models. These algorithms range
from iterative thresholding/shrinkage methods [Wen et al., 2010, Wright et al., 2009] and stochastic gra-
dient [Shalev-Schwartz and Tewari, 2009] to more computationally intensive interior point methods [Kim
et al., 2007].

Coordinate descent, which we call Shooting after Fu [1998], is a simple but very effective algorithm
which updates one coordinate per iteration, performing minimization w.r.t. that coordinate while holding
all other coordinates fixed. As we discuss in Sec. 4.2, theory [Shalev-Schwartz and Tewari, 2009] and
extensive empirical results [Yuan et al., 2010] have shown that variants of Shooting are particularly
competitive on high-dimensional data. In addition, coordinate descent does not require careful tuning of
parameters, unlike methods such as stochastic gradient which require selecting learning rates.

In this work, we are interested in developing faster algorithms for solving large-scale L1-regularized
problems, especially when the training samples have sparse values. The need for scalable optimization is
growing as more applications use high-dimensional data, but processor core speeds have stopped increas-
ing in recent years. Instead, computers come with more cores, and the new challenge is utilizing them
efficiently. For this, we turn to parallel optimization algorithms.

We began our research with an extensive experimental evaluation of current algorithms for minimizingL1-
regularized squared error and logistic loss. In the process, we found that Shooting was competitive on
almost all types of problems and outperformed other algorithms on large and sparse datasets. The natural
question was whether we could improve Shooting—or another algorithm—via parallelization.

Parallelizing internal operations: Most other algorithms, such as interior point methods and iterative
shrinkage and thresholding algorithms, were already benefiting from parallel matrix-vector operations in
their underlying linear algebra libraries. Parallelizing the internal operations of Shooting proved to be
inefficient because each update involves only a handful of numerical operations. Particularly with sparse
input, the overhead required for parallel computation outweighed the benefits.

Parallelizing over samples: We also studied recent work which analyzes parallel stochastic gradient de-
scent for multicore [Langford et al., 2009b] and distributed settings [Mann et al., 2009, Zinkevich et al.,
2010]. These methods parallelize over samples. In applications using L1 regularization, though, there are
often many more features than samples, so parallelizing over samples may be of limited utility.

Parallelizing over features: Thus, we were left with a final natural direction for parallelizing Shooting:
minimizing multiple coordinates in parallel. At first sight, this seems unreasonable because of cross-
feature correlations. However, after a series of experiments, we were surprised to discover that parallel
Shooting with up to 16 processor cores converged faster than sequential Shooting on most problems,
and that the few failure cases exhibited rapid divergence. In our subsequent analysis, we were able to
explain this behavior theoretically and confirm our theory’s predictions in experiments.

In Sec. 4.3, we describe Shotgun [Bradley et al., 2011], a simple multicore version of Shootingwhich
updates P coordinates in parallel. We prove strong convergence bounds for Shotgun predicting speedups

59

over Shootingwhich are near-linear in P, up to a problem-dependent optimum P∗. Moreover, our theory
provides an estimate for this ideal P∗ which may be easily computed from the data.

In Sec. 4.4, we present a brief survey of related work on optimization algorithms for problems with
L1 regularization. Since our initial work [Bradley et al., 2011], there has been a significant amount
of new research in the field, including new distributed algorithms for solving convex problems. In our
experiments, these new methods are promising for solving very large problems that cannot fit into the
memory of a single computer, but they are not as fast as Shotgun in the multicore setting.

In Sec. 4.5, we compare multicore Shotgun with five state-of-the-art algorithms on 35 real and synthetic
datasets. The results show that in large problems Shotgun outperforms the other algorithms. The experi-
ments also validate our theoretical predictions by showing that Shotgun requires only about 1/P as many
iterations as Shooting. We measure the parallel speedup in running time and analyze the limitations
imposed by current multicore hardware.

This paper improves upon our initial results [Bradley et al., 2011] with corrections and extensions to theory
and experiments, as well as an extensive discussion comparing our method with related work.

4.2 L1-Regularized Loss Minimization

We consider classification and regression problems in which we wish to use a d-dimensional feature
vector ai ∈ Rd to predict an outcome yi ∈ Y . Learning such a prediction function commonly involves
minimizing a regularized loss over training samples, leading to optimization problems of the form

min
x∈Rd

F (x), where F (x) =

n∑
i=1

L(aTi x, yi) + λ‖x‖1 . (4.1)

Above, L(·) is the loss, which we assume to be non-negative and convex. The function is parameterized
by x ∈ Rd, an unknown vector of weights for features. We have n training samples, each of which is
specified by the features ai and outcome yi ∈ Y . We weight the L1 regularization term with the parameter
λ ≥ 0. F (x) is called the objective function.

We let A ∈ Rn×d be the design matrix, whose ith row is ai. We assume w.l.o.g. that columns of A are
normalized s.t. diag(ATA) = 1.1 We denote y ∈ Yn as the vector of outcomes for all samples.

One instance of Eq. (4.1) is the Lasso [Tibshirani, 1996], which uses the squared error with Y ≡ R:

min
x∈Rd

1
2‖Ax− y‖22 + λ‖x‖1 . (4.2)

Another instance of Eq. (4.1) is sparse logistic regression [Ng, 2004], which uses the logistic loss with
Y ≡ {−1,+1}:

min
x∈Rd

n∑
i=1

log
(
1 + exp

(
−yiaTi x

))
+ λ‖x‖1 . (4.3)

For analysis, we follow Shalev-Schwartz and Tewari [2009] and transform Eq. (4.1) into an equivalent
problem with a twice-differentiable regularizer. We use duplicated features âi = [ai;−ai] ∈ R2d and let

1Normalizing A does not change the objective if a separate, normalized λj is used for each xj . If column j of A is scaled by
1/z, then we scale λj = λ/z; scaling xj by z will then leave the objective unchanged. We use this trick in our experiments.

60

Algorithm 4.1: Shooting: Sequential SCD

Input: Data A ∈ Rn×d , y ∈ Rn; scalar λ ≥ 0
Set x = 0 ∈ R2d

+ .
while not converged do

Choose j ∈ {1, . . . , 2d} uniformly at random.
Set δxj ←− max{−xj ,−(∇F (x))j/β}.
Update xj ←− xj + δxj .

x̂ ∈ R2d
+ , where R+ denotes the non-negative real numbers. We solve

min
x̂∈R2d

+

n∑
i=1

L(âTi x̂, yi) + λ
2d∑
j=1

x̂j . (4.4)

If x̂ ∈ R2d
+ minimizes Eq. (4.4), then x : xi

.
= x̂d+i − x̂i minimizes Eq. (4.1). We prove this equivalence

in more detail in Sec. B.1.2. Though our analysis uses duplicate features, they are not needed for an
implementation.

4.2.1 Sequential Stochastic Coordinate Descent (Sequential SCD)

Shalev-Schwartz and Tewari [2009], Shalev-Shwartz and Tewari [2011] analyze Stochastic Coordinate
Descent (SCD), a stochastic version of Shooting for solving Eq. (4.1). SCD, detailed in Alg. 4.1,
randomly chooses one weight xj to update per iteration. SCD computes the update xj ← xj + δxj
via

δxj = max{−xj , −(∇F (x))j/β} , (4.5)

where β > 0 is a loss-dependent constant. β is an upper bound on the curvature of the loss, formalized
by the following assumption which places a uniform upper bound on the change in the loss F (x) from
updating a single weight.

Assumption 4.2.1. Let F (x) : R2d
+ −→ R be a convex function. Let ej be a unit vector with 1 in its jth

entry. Assume there exists β > 0 s.t., for all x and single-weight updates δxj , we have:

F (x + (δxj)ej) ≤ F (x) + δxj(∇F (x))j + β
2 (δxj)

2 .

For the losses in Eq. (4.2) and Eq. (4.3), Shalev-Schwartz and Tewari [2009] show that Taylor expansions
give

β = 1 (squared error) and β = 1
4 (logistic loss). (4.6)

We provide a proof of Eq. (4.6) in Sec. B.1.1. With these values for β, the closed-form update in Eq. (4.5)
is an exact minimization for the Lasso (Eq. (4.2)) and is guaranteed to decrease the objective for logistic
regression (Eq. (4.3)).

Using Assumption 4.2.1, Shalev-Schwartz and Tewari [2009] prove the following convergence bound for
SCD. (We also provide a proof in Sec. B.1.3.)

61

Theorem 4.2.1. [Shalev-Schwartz and Tewari, 2009] Let x∗ minimize Eq. (4.4) and x(T) be the output of
Alg. 4.1 after T iterations. If F (x) satisfies Assumption 4.2.1, then

E
[
F (x(T))

]
− F (x∗) ≤ d(β‖x∗‖22 + 2F (x(0)))

T + 1
, (4.7)

where E[·] is w.r.t. the random choices of weights j.

Theorem 4.2.1 shows that the distance of the expected objective on iteration T from the optimum decreases
as 1/T . The bound increases with ‖x∗‖22, which accounts for the distance between the initial weights
x(0) = 0 and the optimum x∗, and increases with F (x(0)), the initial objective value.

4.2.2 Scalability of SCD

Multiple works have argued that SCD and other variants of coordinate descent are among the most scal-
able methods for solving sparse regression problems of the form in Eq. (4.1). Yuan et al. [2010] present
a large-scale empirical comparison of algorithms for sparse logistic regression, including coordinate de-
scent, block coordinate descent, trust region Newton methods, and interior point methods. Their results
consistently highlight coordinate descent as one of the fastest methods.

As Shalev-Schwartz and Tewari [2009] argue, Theorem 4.2.1 indicates that SCD scales well, relative to
other methods, as the dimensionality d of the data increases. Nesterov [2010] also provides theoretical
results indicating that SCD scales well w.r.t. d, and discusses classes of objectives for which coordinate
descent can outperform full-gradient updates. We compare SCD with other methods in more detail in
Sec. 4.4.

We emphasize that our work parallelizes one of the fastest sequential methods for sparse regression. As our
empirical results show, slower methods may be simpler to parallelize (e.g., by parallelizing operations on
large matrices and vectors), but those slow methods are often outperformed by even sequential SCD.

4.3 Parallel Coordinate Descent

As the dimensionality d or sample size n increase, even fast sequential algorithms become expensive. To
scale to larger problems, we turn to parallel computation, using the multicore setting. In this section, we
present our main theoretical contribution: we prove that coordinate descent can be parallelized, giving
strong convergence bounds.

We parallelize Shooting (SCD) and call our algorithm Shotgun (Alg. 4.2). Shotgun initially
chooses P, the number of weights to update in parallel. On each iteration, it chooses a subset of P weights
from {1, . . . , 2d} uniformly at random from the possible combinations; these form a set Pt. It updates
each xi : i ∈ Pt, in parallel using the same update as Shooting Eq. (4.5). We define ∆x as the
collective update to x; i.e., (∆x)i = δxi if i ∈ Pt, and (∆x)i = 0 otherwise.

Intuitively, parallel updates might increase the risk of divergence. In Fig. 4.1, the left subplot shows
how parallel updates can speed up convergence when features are uncorrelated; the right subplot shows
how parallel updates of correlated features can increase the objective. We could avoid such divergence
by imposing a step size; e.g., a step size of 1

P
ensures convergence since F is convex in x. However,

62

Algorithm 4.2: Shotgun: Parallel SCD

Input: Data A ∈ Rn×d, y ∈ Rn; scalar λ ≥ 0
Choose number of parallel updates P ≥ 1.
Set x = 0 ∈ R2d

+ .
while not converged do

Choose random subset of P weights in {1, . . . , 2d}.
In parallel on P processors do

Get assigned weight j.
Set δxj ←− max{−xj ,−(∇F (x))j/β}.
Update xj ←− xj + δxj .

� �

�� �� �� � �� � � �

� ��
� �

�� �� �� � ��

� � �

� ��

Figure 4.1: Intuition for parallel coordinate descent. Contour plots of two objectives, with darker
meaning better. Each plot shows updates δi, δj which minimize coordinates independently, plus the sum
of the updates when executed in parallel. Left: The features are uncorrelated, so parallel updates do
not conflict and speed convergence. Right: The features are correlated, so parallel updates conflict and
possibly cause divergence.

our experiments showed that approach to be impractical, for it results in very small steps and long run-
times.

We formalize this intuition for the Lasso in Theorem 4.3.1. We can separate a sequential progress term
(summing the improvement from separate updates) from a term measuring interference between parallel
updates. If ATA were normalized and centered to be a covariance matrix, the elements in the interference
term’s sum would be non-zero only for correlated variables, matching our intuition from Fig. 4.1. Harmful
interference could occur when, e.g., δxi, δxj > 0 and features i, j were positively correlated.

Theorem 4.3.1. Fix x. If ∆x is the collective update to x in one iteration of Alg. 4.2 for the Lasso, then

F (x + ∆x)− F (x) ≤ −1
2

∑
i∈Pt

(δxi)
2

︸ ︷︷ ︸
sequential progress

+ 1
2

∑
i,j∈Pt

(ATA)i,jδxiδxj︸ ︷︷ ︸
interference

. (4.8)

We prove Theorem 4.3.1 in Sec. B.1.4. In the next section, we show that this intuition holds for the more
general optimization problem in Eq. (4.1).

63

4.3.1 Shotgun Convergence Analysis

In this section, we present our convergence result for Shotgun. The result provides a problem-specific
measure of the potential for parallelization: the spectral radius ρ of ATA (i.e., the maximal absolute
eigenvalue of ATA). Moreover, this measure is prescriptive: ρ may be estimated via methods like power
iteration2 [Gilbert, 1988], and it provides a plug-in estimate of the ideal number of parallel updates.

We begin by generalizing Assumption 4.2.1 to our parallel setting. The assumption still holds for Lasso
and logistic regression, with the same scalars β as in Eq. (4.6).

Assumption 4.3.1. Let F (x) : R2d
+ −→ R be a convex function. Assume that there exists β > 0 such

that, for all x and parallel updates ∆x, we have

F (x + ∆x) ≤ F (x) + ∆xT∇F (x) + β
2 ∆xTATA∆x .

Similarly to Theorem 4.3.1, the above assumption bounds the change in our objective F (·) when we
update our weights x with ∆x. Our analysis will balance the progress measured by the first-order term
∆xT∇F (x) against harmful interference bounded by the second-order term. We now state our main
result, generalizing the convergence bound in Theorem 4.2.1 to the Shotgun algorithm.

Theorem 4.3.2. Let x∗ minimize Eq. (4.4), and let x(T) be the output of Alg. 4.2 after T iterations with
P parallel updates per iteration. Let ρ be the spectral radius of ATA. If F (x) satisfies Assumption 4.3.1
and P is chosen s.t. ε .= (P−1)(ρ−1)

2d−1 < 1, then

E
[
F (x(T))

]
− F (x∗) ≤

d
(
β‖x∗‖22 + 2

1−εF (x(0))
)

(T + 1)P
,

where E[·] is w.r.t. the random choices of weights to update. Choosing a near-optimal P∗ ≈ d
ρ gives

E
[
F (x(T))

]
− F (x∗) .

ρ
(
β‖x∗‖22 + 4F (x(0))

)
T + 1

.

Without duplicated features, Theorem 4.3.2 predicts that we can do up to P ≤ d
2ρ parallel updates and

achieve speedups almost linear in P. For an ideal problem with uncorrelated features, ρ = 1, so we could
do up to P∗ = d parallel updates. For a pathological problem with exactly correlated features, ρ = d,
so our theorem tells us that we could not do parallel updates. With P = 1, we recover the result for
Shooting in Theorem 4.2.1.

The choice P∗ is near-optimal since it is within a factor 2 of the maximum P s.t. ε < 1 and since it
sets ε ≈ 1

2 in the bound (so ε is a small constant). When we have unlimited parallelism and use this
near-optimal P∗, the convergence bound ceases to depend on the dimensionality d and instead depends on
ρ ∈ [1, d].

In Sec. B.1.7, we discuss choosing weights independently to form a multiset. We can produce a conver-
gence bound analogous to that in Theorem 4.3.2, but it has larger constants and permits fewer parallel
updates.

To prove Theorem 4.3.2, we first bound the harmful impact of interference between parallel updates.
2For our datasets, power iteration gave reasonable estimates of ρ within a small fraction of the total Shotgun runtime.

64

Lemma 4.3.3. Fix x. Let ε = (P−1)(ρ−1)
2d−1 , where P is chosen s.t. ε < 1. Let Pt be the set of coordinates

updated, and let ∆x be the collective update to coordinates Pt of x in one iteration of Alg. 4.2. Let δxj be
the update to coordinate j given by Eq. (4.5). Under the assumptions and definitions from Theorem 4.3.2,

EPt [F (x + ∆x)− F (x)] ≤ P ·Ej
[
δxj(∇F (x))j + β

2 (1 + ε)(δxj)
2
]
, (4.9)

where EPt is w.r.t. the random choice of Pt and Ej is w.r.t. choosing j ∈ {1, . . . , 2d} uniformly at
random.

The above lemma shows that we make progress as long as ε is small enough. In the expectation on the
right-hand side of Eq. (4.9), the first term δxj(∇F (x))j will be negative (good), while (δxj)

2 will be
positive (bad). If ε is small enough s.t. the sum of terms is negative, then we will make progress in
expectation.

We prove Lemma 4.3.3 and Theorem 4.3.2 in Sec. B.1.6 and Sec. B.1.5, respectively. The proof for
Lemma 4.3.3 introduces the spectral radius of ATA to bound the harmful interference from the second-
order term in Assumption 4.3.1. The proof for Theorem 4.3.2 is similar to that for Theorem 4.2.1, but it
replaces Assumption 4.2.1 with Lemma 4.3.3 and uses a different potential function.

4.3.2 Theory vs. Empirical Performance

We briefly compare the predictions of Theorem 4.3.2 about the number of parallel updates P with the
actual empirical performance for Lasso. We exactly simulated Shotgun as in Alg. 4.2 to eliminate
effects from the practical implementation choices made in Sec. 4.5. We tested two single-pixel camera
datasets from Duarte et al. [2008] and two compressed sensing datasets from the Sparco testbed [van den
Berg et al., 2009], with a wide range of spectral radii ρ. We estimated EPt

[
F (x(T))

]
by averaging 10 runs

of Shotgun. For Ball64 singlepixcam, we used λ = 0.5 to get x∗ with about 68% non-zeros; for
Mug32 singlepixcam, we used λ = 0.05 to get about 45% non-zeros; for SparcoProblem5, we
used λ = 0.5 to get about 29% non-zeros; and for SparcoProblem7, we used λ = 0.5 to get about 3%
non-zeros.

Fig. 4.2 plots P versus the iterations T required for EPt
[
F (x(T))

]
to come within 0.5% of the optimum

F (x∗). Theorem 4.3.2 predicts that T should decrease as 1
P

as long as P ≤ P∗ ≈ d
2ρ . The empirical

behavior follows this theory: using the predicted P∗ gives almost optimal speedups, and speedups are
almost linear in P. As P exceeds P∗, Shotgun soon diverges.

Fig. 4.2 confirms Theorem 4.3.2’s result: Shooting, a seemingly sequential algorithm, can be paral-
lelized and achieve near-linear speedups, and the spectral radius of ATA succinctly captures the potential
for parallelism in a problem. To our knowledge, our convergence results are the first for parallel coordinate
descent for L1-regularized losses, and they apply to any convex loss satisfying Assumption 4.3.1.

4.3.3 Relaxing the Spectral Conditions on ATA

Our required bound on the maximum eigenvalue of ATA is related to conditions required by many anal-
yses of sparse signal recovery, such as the Restricted Isometry Property (RIP) of Candes and Tao [2005]
and the restricted eigenvalue conditions of Meinshausen and Yu [2009]. These other conditions generally
place bounds on the eigenvalues of submatrices of ATA, rather than the eigenvalues of the entire matrix

65

100
104.3

104.5

104.7

P (parallel updates)

T
(it

er
at

io
ns

)

P*=1	

3	 2	 1	 100 101 102

102

103

P (parallel updates)

T
(it

er
at

io
ns

) P*=79	 P*=65	

100 101 102
103

104

105

P (parallel updates)

T
(it

er
at

io
ns

)

100 101 102 103

102

103

104

P (parallel updates)

T
(it

er
at

io
ns

) P*=284	

Ball64 singlepixcam Mug32 singlepixcam SparcoProblem5 SparcoProblem7
d = 4096, ρ = 2047.8 d = 1024, ρ = 6.4967 d = 2048, ρ = 15.673 d = 2560, ρ = 4.5113

Figure 4.2: Theory vs. empirical performance for Shotgun’s P. We compare the predictions of The-
orem 4.3.2 with results for Lasso on four datasets. The Y-axis has iterations T until EPt [F (x(T))] came
within 0.5% of F (x∗). Thick red lines plot T against increasing P (until too large P caused divergence).
Thin vertical lines mark the near-optimal P∗. Dotted diagonal lines show optimal (linear) speedups (and
are mostly hidden by the actual results).

ATA. For example, Candes and Tao [2005] say that A satisfies the RIP of order k with constant γk < 1
if γk is the smallest number s.t.

(1− γk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + γk)‖x‖22 , ∀x : ‖x‖0 ≤ k . (4.10)

We show here how our condition on the spectral radius of ATA may be similarly relaxed to submatrices
of ATA. The spectral radius ρ which we use in Theorem 4.3.2 may be expressed as the smallest number
s.t. ‖Ax‖22 ≤ ρ‖x‖22, ∀x. One may see the similarity with the right-hand inequality in Eq. (4.10), which
bounds the spectral radius of k-by-k submatrices of ATA. In fact, our proofs only use this inequality
with P-sparse update vectors ∆x. Therefore, we can relax our required condition by replacing ρ with ρP
in Theorem 4.3.2, where ρP is defined as the smallest number s.t.:

‖Ax‖22 ≤ ρP‖x‖22 , ∀x : ‖x‖0 ≤ P . (4.11)

This condition is looser since ρP ≤ ρ. The difference between ρP and ρ is especially large when d � n
and P is relatively small (p < n); see, e.g., Candes and Tao [2006] for a discussion of such matrices in
terms of the RIP.

4.3.4 Beyond L1

Thus far, we have discussed Shotgun in terms of the Lasso and sparse logistic regression, but our results
actually generalize to a wider class of objectives, including other smooth losses and L2 regularization.
The main requirement on the objective in Theorem 4.3.2 is Assumption 4.3.1. This assumption may be
generalized by leaving the bound on the Hessian term in a more general form:

Assumption 4.3.2. Let F (x) : R2d
+ −→ R be a convex function. Assume that there exists a scalar β > 0

and a positive semidefinite matrix M with an all-ones diagonal such that, for all x and parallel updates
∆x, we have

F (x + ∆x) ≤ F (x) + ∆xT∇F (x) + β
2 ∆xTM∆x .

After this generalization, Lemma 4.3.3 and Theorem 4.3.2 remain almost identical, with the only change
being that the matrix ATA is replaced with its generalization M. The proofs likewise remain the same.

66

(We normalize features in order to make M have an all-ones diagonal; after this normalization, the value
of β may be identified. The update rule in Eq. (4.5) remains the same.)

In this paper, we focus on L1 regularization since both sparse regression and our method (coordinate
descent) are arguably most useful for high-dimensional settings. We focus on the squared error and logistic
losses for their importance in the field. Also, these two losses result in the simple form M = ATA and
give values of β which do not depend on the data.

4.4 Related Work

In this section, we compare our SCD-based approach with alternative methods for L1-regularized loss
minimization. The literature on sparse regression, compressed sensing, and similar applications is vast, so
we concentrate on recent work and try to touch on the main classes of algorithms. Each subsection dis-
cusses a major design choice which affects algorithms’ convergence rates and potential for parallelization.
We summarize in Tab. 4.1 and empirically evaluate many of the algorithms in Sec. 4.5.

We refer the interested reader to several other works with useful literature reviews. Yang et al. [2010]
discuss some of the algorithms we include below, but w.r.t. a different Lasso-like problem formulation:
minx‖x‖1 s.t.Ax = y. They also provide some useful empirical comparisons. Yuan et al. [2010] em-
pirically compare a large number of algorithms for sparse logistic regression. Figueiredo et al. [2008]
discuss several problem formulations related to the Lasso penalty formulation in Eq. (4.2), as well as the
applications and algorithms associated with each formulation.

4.4.1 Coordinate vs. Full Gradient Methods

Most algorithms in the literature are full gradient methods, which update all weights x at once.3 Coordi-
nate Descent (CD) methods update elements of x individually. These methods are very cheap per iteration
when the gradient computation decomposes across coordinates, as it does for the squared error and logistic
loss with L1 regularization.

For coordinate descent, a major design choice is the order in which coordinates are updated. Stochastic
CD (SCD) [Shalev-Schwartz and Tewari, 2009] chooses coordinates randomly, and it is generally the
most efficient and easiest to analyze. Cyclic CD, which cycles through coordinates, performs similarly
to SCD in practice, but its current convergence analysis requires an isotonicity assumption which does not
hold in general [Saha and Tewari, 2010]. (For Lasso, the isotonicity assumption is equivalent to assuming
that (ATA)ij ≤ 0, ∀i 6= j.)

Greedy CD updates the coordinate whose value changes most when optimized. Though Greedy CD
requires fewer iterations in general than SCD and Cyclic CD, each iteration can be d times more ex-
pensive since the full gradient must be calculated. Dhillon et al. [2011] use approximate nearest neighbor
search to reduce the expense of each iteration, making Greedy CD sublinear in the number of non-zero
entries in A after a linear-time initialization. Their experiments show this improvement makes Greedy
CD perform about as well as Cyclic CD on large problems. Homotopy methods, which include some

3We write “gradient” instead of “subgradient” since many terms in the literature are written with “gradient” but generalize to
subgradients.

67

Scales
w

ith
R

elative
R

untim
e

Scaling:
A

lgorithm
ic

A
lgorithm

B
ound

on
Iterations

C
ostper

Sparsity
R

atio
ofU

pperB
ounds

C
ategory

L
asso

L
ogreg

Iteration
of

A
(O

therA
lg./

S
C
D)

C
oordinate

C
y
c
l
i
c

C
D

d‖x
∗‖

22 /
ε

d‖x
∗‖

22 /
ε

n
Y

es
—

D
escent

S
t
o
c
h
a
s
t
i
c

C
D

(
S
C
D
)

d‖x
∗‖

22 /
ε

d‖x
∗‖

22 /
ε

n
Y

es
—

G
r
e
e
d
y

C
D

‖x
∗‖

21 /
ε

‖x
∗‖

21 /
ε

n
d

Y
es

‖x
∗‖

0

Iterative
G
P
S
R
-
B
B

?/
ε

N
/A

k
·
n
d

Y
es

?
·
k

Shrinkage/
S
p
a
R
S
A

?/
ε

?/
ε

k
·
n
d

Y
es

?
·
k

T
hresholding

F
P
C
A
S

?/
ε

N
/A

k
·n
d

2
N

o
?
·
k
·d

C
om

pressed
H
a
r
d
l
0

N
/A

N
/A

n
d

Y
es

N
/A

Sensing
C
o
S
a
M
P

N
/A

N
/A

n
d

Y
es

N
/A

H
om

otopy
L
A
R
S

d
N

/A
d
(d

+
n

)
N

o
ε/‖

x
∗‖

22
·
d

2

V
a
n
i
l
l
a

S
G
D

N
/A

κ
1 ‖x
∗‖

22 /
ε

2
d

Y
es

1/n
·
d
/ε

Stochastic
T
r
u
n
c
G
r
a
d

κ
1 ‖x
∗‖

22 /
ε

2
κ

1 ‖x
∗‖

22 /
ε

2
d

Y
es

1/n
·
d
/ε

G
radient

S
M
I
D
A
S

‖
x
∗‖

21 /
ε

2
‖
x
∗‖

21 /
ε

2
d

N
o

1
/n
·‖x

∗‖
0 /ε

R
D
A

c
2·d‖x

∗‖
22 /
ε

2
κ

1 ‖x
∗‖

22 /
ε

2
d

N
o

1/n
·
d
/ε

A
ccelerated

F
I
S
T
A

√
ρ‖

x
∗‖

2 / √
ε
√
ρ‖

x
∗‖

2 / √
ε

k
·
n
d

Y
es

√
ε/‖x

∗‖
2
·
k
· √

ρ

InteriorPoint
L
1
L
S,L

1
l
o
g
r
e
g

κ
3

lo
g
(d
/
ε)

κ
3

lo
g
(d
/
ε)

n
d

2
N

o
ε/‖x

∗‖
22
·
d

3
/
2

D
istributed

A
D
M
M

?
?

k
·
n
d

Y
es

?
·
k

D
D
A

‖x
∗‖

22 c
2ρ

2/
ε

2
‖x
∗‖

22 d
/
ε

2
n
d

Y
es

d
/ε

N
otation:

c
.=

constant
in

L
asso

constraint
form

in
E

q.
(4.12).

ρ
.=
λ
m
a
x
(A

T
A

).
κ

1
.=

m
a
x
i ‖a

i ‖
22 .

κ
3

depends
on

the
log-barrier

function
m

ulti-
pliers

in
interiorpoint.Foralgorithm

s
w

ithoutiteration
bounds

butw
ith

convergence
rates,w

e
w

rite
“?”

to
denote

unknow
n

constants.Foralgorithm
s

w
ith

line
searches,k

is
the

num
berofline

search
iterations.

Table
4.1:R

elated
w

ork,com
pared

w
ith

S
t
o
c
h
a
s
t
i
c
C
D
(
S
C
D
).(See

Sec.4.4.)
U

pper
B

ound
on

Iterations:K
now

n
bounds

on
the

iter-
ations

required
to

achieve
erroratm

ost
ε
.=

1n [E [F
(x

(T
))]−

F
(x
∗)],ignoring

sm
allconstants

and
log

term
s.C

ostper
Iteration:A

pproxim
ate

num
berofoperations

periteration.Scalesw
ith

Sparsity
of

A
indicates

ifC
ostperIteration

is
proportionalto

the
num

berofnon-zero
elem

ents
in

A
.

In
R

elative
R

untim
e

Scaling,w
e

com
pute

each
algorithm

’s
runtim

e
bound

(B
ound

on
Iterations×

C
ostperIteration,choosing

the
betterof

L
asso

orL
ogreg)and

state
its

ratio
w

ith
the

S
C
D

bound;blue
term

s
indicate

betterscaling
than

S
C
D,and

red
term

s
indicate

w
orse.A

s
discussed

in
Sec.B

.2,w
e

approxim
ate

κ
1
≈
n,
κ

3
≈
√
d,and

‖
x
∗‖

21
≤
‖x
∗‖

0 ‖
x
∗‖

22 .

68

of the classic algorithms from the statistics literature such as LARS [Efron et al., 2004], use a form of
Greedy CD.

All three coordinate descent methods can take advantage of sparsity in A. I.e., if only a fraction s of the
entries of A are non-zero, then the algorithms’ runtimes are multiplied by s.

Full gradient methods and Greedy CD generally require matrix-vector multiplications Ax on each iter-
ation to compute the gradient, so they can benefit from pre-existing parallel linear algebra libraries. How-
ever, as we see in our experiments with L1 LS [Kim et al., 2007] and L1 logreg [Koh et al., 2007], the
extra efficiency of coordinate descent can outweigh the benefit of parallel matrix-vector operations.

4.4.2 Batch vs. Stochastic Gradient

Both coordinate and full gradient methods can estimate the gradient using all or part of the training sam-
ples. Batch gradient methods compute the gradient using all of the samples. Stochastic Gradient Descent
(SGD) attempts to speed up optimization by estimating the gradient on each iteration using a single ran-
domly chosen sample. Many authors (e.g., Langford et al. [2009a]) have argued that SGD is one of the most
scalable methods for large datasets, so we compare it in detail with SCD. Tab. 4.1 summarizes this com-
parison for four SGD variants: Vanilla SGD (a naive approach), Truncated Gradient (TruncGrad)
[Langford et al., 2009a], Stochastic MIrror Descent Algorithm made Sparse (SMIDAS) [Shalev-Schwartz
and Tewari, 2009], and Regularized Dual Averaging (RDA) [Xiao, 2010].

Though the upper bounds on runtime in Tab. 4.1 do not all have corresponding lower bounds, comparing
the bounds for SCD with SGD variants lets us make several observations which are supported by our
experiments:

• As the dimensionality d increases, SCD’s performance should improve, relative to SGD. While the
bounds for both methods explicitly increase as O(d), the SGD bounds all include additional factors
which can increase as O(d).

• As the sample size n increases, SGD’s performance should improve, relative to SCD. The total
runtime bound for SGD is independent of n, while the runtime bound for SCD increases as O(n).

• SCD will always overtake SGD in terms of the error ε after enough iterations. To see this, note
that SCD requires O(1/ε) iterations, while SGD requires O(1/ε2) iterations. Proponents of SGD
sometimes argue that fast, approximate solutions suffice for machine learning, if the statistical error
from using a finite sample size outweighs the approximation error [Bottou and Bousquet, 2007]. On
the other hand, in our experiments, SCD overtakes SGD when ε is still quite large, sometimes from
the beginning.

These dependencies on d, n, and ε listed above indicate that SCD and SGD perform best in different
regimes. Below, we mention complications affecting SGD in all regimes.

Sparsity in x: With SGD, it can be unclear how to balance the gradient of the loss, which is estimated
very roughly, with the subgradient of the L1 regularization term. Vanilla SGD produces dense weight
vectors x(t), but most SGD algorithms use soft thresholding (Sec. 4.4.4) to shrink the weights towards zero.
However, these sparsifying SGD methods often produce denser solutions than batch gradient methods
[Shalev-Schwartz and Tewari, 2009, Xiao, 2010].

Sparsity in A: Vanilla SGD and TruncGrad can both take advantage of sparsity in A, though

69

TruncGrad must use a lazy update trick in Section 5 of Langford et al. [2009a]. The mirror update
in SMIDAS and the averaging method in RDA prevent those methods from using lazy updates.

Termination criteria: Batch gradient methods often maintain all elements of the exact gradient, and com-
paring the gradient magnitude with a convergence tolerance parameter gives a theoretically sound and
practical termination criterion. SGD uses very noisy estimates of the gradient, so it can be much more
difficult to know when to declare convergence.

Some authors have proposed using mini-batches of samples in order to interpolate between batch and
stochastic gradient methods. Zinkevich et al. [2010] and Dekel et al. [2012] present distributed SGD
algorithms in which compute nodes handle different mini-batches, though their analyses do not handle
non-smooth regularization (like L1). We show empirical results for the algorithm from Zinkevich et al.
[2010] in Sec. 4.5.2.

4.4.3 First-Order, Second-Order, and Accelerated Methods

First-order methods simply take steps in the direction of the gradient. Batch gradient computation gener-
ally results inO(1/T) global convergence rates, while stochastic gradient results inO(1/

√
T) rates.

Adjusting the descent direction using the Hessian can improve the rate toO(1/T 2). Second-order methods
compute the Hessian directly, resulting in very expensive (but parallelizable) iterations, each of which cost
O(d2) time. The interior point methods L1 LS [Kim et al., 2007] and L1 logreg [Koh et al., 2007] in
Tab. 4.1 are second-order methods. Relative to first-order methods like SCD and Shotgun, interior point
converges in very few (but costly) iterations. Since the interior point softens the L1 constraints, it usually
produces dense solutions x, even when achieving near-optimal objective values.

Accelerated gradient methods, such as FISTA [Beck and Teboulle, 2009], implicitly estimate the Hes-
sian using previous gradients, thereby achieving O(1/T 2) convergence rates while maintaining iterations
which cost O(d) time. We list one accelerated method: Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [Beck and Teboulle, 2009]. FISTA accelerates traditional IST, achieving one of the best bounds
in Tab. 4.1. Joseph B.: Say something about SpaRSA (and other IST-based methods?) doing better in our
experiments. We’ll need a good explanation...since that is strange.

Most accelerated and second-order methods update the full weight vector on each iteration. Nesterov
[2010] show how to accelerate coordinate descent for unconstrained minimization of a strongly convex
objective, which excludes our sparse regression problems. Extending the analysis to convex but not strictly
convex objectives would be interesting, for it might lead to an accelerated version of SCD and Shotgun.
However, their method requires dense vector updates, regardless of sparsity in A and x.

4.4.4 Soft vs. Hard Thresholding

Naive optimization methods can produce dense approximate solutions x, even while achieving near-
optimal objective values. Several techniques help to generate sparse solutions x.

Soft thresholding shrinks all weights x towards zero by a distance λ. It may be derived from penalty formu-
lations, as in Eq. (4.2). The coordinate descent, stochastic gradient, and iterative shrinkage/thresholding
methods in Tab. 4.1 all use soft thresholding (except for FPC AS [Wen et al., 2010], which is designed for
compressed sensing).

70

The same optimization problem may also be expressed in constraint form; for Lasso, the problem be-
comes:

min
x∈Rd

1
2‖Ax− y‖22 s.t. ‖x‖1 ≤ c . (4.12)

The constant cmay be chosen according to λ s.t. the penalty and constraint forms share the same optimum.
Algorithms derived from the constraint form often use gradient projection to keep x in the feasible region.
The projection can sparsify x by projecting some elements to zero. In Tab. 4.1, GPSR-BB uses gradient
projection.

Constraint formulations with the L1 norm replaced by the L0 norm often result in algorithms which use
hard thresholding, which sets all but a fixed number of elements of x to zero. In particular, compressed
sensing algorithms, such as Hard l0 [Blumensath and Davies, 2009] and CoSaMP [Needell and Tropp,
2010], often use hard thresholding. Likely because of this difference in problem formulations, in our
experiments, Hard l0 and CoSaMP were competitive with Shotgun on compressed sensing datasets
but not on other types of data.

4.4.5 Parallel Algorithms

Parallel coordinate descent was also considered by Tsitsiklis et al. [1986], but for differentiable objectives
in the asynchronous setting. They give a very general analysis, proving asymptotic convergence but not
convergence rates. We are able to prove rates and theoretical speedups for our class of objectives.

Scherrer et al. [2012a,b], published after our initial work, discuss a general framework for parallel al-
gorithms applicable to L1-regularized loss minimization. They discuss SCD, Shotgun, and Greedy
CD, as well as new parallel coordinate descent algorithms which choose groups of coordinates greedily
or using graph colorings. Their convergence analysis and experiments indicate that careful clustering of
coordinates by group can improve convergence.

Niu et al. [2011] present a method for parallelizing stochastic gradient which is similar in spirit to
Shotgun. It makes parallel updates which can conflict, relying on the sparsity of the problem to limit
the harmful impact of conflicts.

We also mention two very different methods for parallelizing L1 regression, targeted at the distributed
setting. The first is the Alternating Direction Method of Multipliers (ADMM) [Boyd et al., 2011b], which
is applicable to master-slave systems which synchronize after every iteration. It is possible to parallelize
optimization over samples or features [Boyd et al., 2011b], or even both at once [Parikh and Boyd, 2012].
To our knowledge, though ADMM converges [Boyd et al., 2011b], there are no known global convergence
rates for ADMM w.r.t. its objective, though there are bounds w.r.t. related values [He and Yuan, 2012, Wang
and Banerjee, 2012].

The second distributed method is Distributed Dual Averaging (DDA) [Duchi et al., 2012], which is a
general method for distributed optimization. The method handles distributing over samples and features,
asynchronous computation, and stochastic gradient estimates. Their method achieves slower convergence
rates than SCD and Shotgun. Also, their bounds are w.r.t. the running average of iterates x(t), which
will not be sparse in general.

71

4.5 Experimental Results

We present an extensive study of Shotgun for the Lasso and sparse logistic regression. On a wide variety
of datasets, we compare Shotgun with published state-of-the-art solvers. We also analyze speedup in
detail in terms of Theorem 4.3.2 and hardware issues.

4.5.1 Lasso

We tested Shooting and Shotgun for the Lasso against five published Lasso solvers on 35 datasets.
We summarize the results here; details are in the supplement.

Implementation: Shotgun

Our implementation made several practical improvements to the basic Shooting and Shotgun algo-
rithms. We approximated a stochastic choice of Pt by cycling through the weights.

Following Friedman et al. [2010], we maintained a vector Ax to avoid repeated computation. We also used
their continuation scheme: rather than directly solving with the given λ, we solved with an exponentially
decreasing sequence λ1, λ2, . . . , λ. The solution x for λk is used to warm-start optimization for λk+1.
The first regularizer λ1 is chosen using λmax, the minimum value for which the optimum x∗ will be all
zeros. Earlier sub-problems use looser termination criteria. This scheme, detailed in Alg. 4.3, can give
significant speedups.

Though our analysis is for the synchronous setting, our implementation was asynchronous because of
the high cost of synchronization. We used atomic compare-and-swap operations for updating the Ax
vector.

We used C++ and the CILK++ library [Leiserson, 2009] for parallelism. All tests ran on an AMD proces-
sor using up to eight Opteron 8384 cores (2.69 GHz).

Algorithm 4.3: Shotgun for Lasso (continuation)

Input: Data A ∈ Rn×d, y ∈ Rn; scalar λ ≥ 0
Set x = 0 ∈ Rd+, K = 1 + bd/2000c

Set λmax = max |2(AT y)i|, α =
(
λmax
λ

)1/K

foreach k = K,K − 1, . . . , 0 do
Set λk = λαk

Solve subproblem: x =Shotgun(x, λk)

Other Algorithms

We tested several of the algorithms discussed in Sec. 4.4:

72

• L1 LS [Kim et al., 2007]: log-barrier interior point. The implementation is in Matlab R©, but the
expensive step (PCG) uses very efficient native Matlab calls. In our tests, matrix-vector operations
were parallelized on up to 8 cores.

• FPC AS [Wen et al., 2010]: iterative shrinkage/thresholding.

• GPSR-BB [Figueiredo et al., 2008]: gradient projection.

• Hard l0 [Blumensath and Davies, 2009]: iterative hard thresholding. We set its sparsity level for
hard thresholding to be the sparsity obtained by Shooting.

• SpaRSA [Wright et al., 2009]: iterative shrinkage/thresholding.

As with Shotgun, all of Shooting, FPC AS, GPSR-BB, and SpaRSA use continuation. Links to
implementations of these algorithms are provided in the supplementary material.

We also tested published implementations of the classic algorithms GLMNET [Friedman et al., 2010] and
LARS [Efron et al., 2004]. Since we were unable to get them to run on our larger datasets, we exclude
their results.

Note: For the experiments in our conference paper, we did not column-normalize the data (divide each
column in A by its Euclidian norm), which caused problems with some of the other algorithms. Column-
normalizing the data requires a small change to the optimization problem: the penalty λ must be re-scaled
for each coordinate. With this fix, we were able to get a modified SpaRSA implementation to solve some
of the very large problems, and we have included these new results. However, Shotgun and Shooting
are still much more efficient for these largest problems.

Results

We divide our comparisons into four categories of datasets. Some dataset statistics are listed in Tab. 4.2,
and the supplementary material has more detailed descriptions.

Sparco: Real-valued datasets of varying sparsity and characteristics from the Sparco testbed
[van den Berg et al., 2009].
n ∈ [128, 29166], d ∈ [128, 29166]

Single-Pixel Camera: Dense compressed sensing problems from the Single-Pixel Camera
project [Duarte et al., 2008].
n ∈ [410, 4770], d ∈ [1024, 16384]

Sparse Compressed Imaging: Similar to Single-Pixel Camera datasets, but with very sparse
random −1/+ 1 measurement matrices. Created by us.
n ∈ [477, 32768], d ∈ [954, 65536]

Large, Sparse Datasets: Very large and sparse problems, including predicting stock volatility
from text in financial reports [Kogan et al., 2009].
n ∈ [30465, 209432], d ∈ [209432, 5845762]

We ran each algorithm on each dataset with regularization λ = 0.5 and 10. Fig. 4.3 summarizes runtime
results, divided by dataset category, and Tab. 4.2 gives actual numbers for the most successful algorithms.
We omit runs which failed to converge within a reasonable time period.

Shotgun (with P = 8) consistently performs well, converging faster than other algorithms on most
dataset categories. Shotgun does particularly well on the Large, Sparse Datasets category, for which

73

D
ataset

n
d

%
non-z

λ
Shotgun

P=8
Shooting

SpaR
SA

L
1

L
S

G
PSR

B
B

sparco402
29166

86016
3.5

0.5
29.6s

(285.2)
101.0s

(285.2)
25.6s

(285.4)
320.1s

(285.2)
46.8s

(285.3)
sparco402

29166
86016

3.5
10.0

4.3s
(533.0)

17.3s
(533.0)

1.0s
(533.0)

24.4s
(533.0)

1.0s
(533.0)

sparco501
629

4096
92.0

0.5
1.3s

(42.0)
3.5s

(42.0)
0.8s

(51.2)
13.9s

(51.2)
0.8s

(51.2)
sparco501

629
4096

92.0
10.0

0.1s
(109.6)

0.2s
(109.6)

0.2s
(121.2)

0.8s
(121.2)

0.2s
(121.2)

sparco502
10000

10000
33.2

0.5
8.5s

(113.3)
28.0s

(113.3)
-

-
-

sparco502
10000

10000
33.2

10.0
1.3s

(148.4)
5.5s

(148.4)
-

-
-

sparco603
1024

4096
70.7

0.5
0.6s

(89.7)
1.5s

(89.7)
0.3s

(89.8)
3.3s

(89.8)
0.4s

(89.8)
sparco603

1024
4096

70.7
10.0

0.3s
(592.7)

0.6s
(592.7)

0.2s
(592.7)

1.2s
(593.0)

0.4s
(592.7)

B
all64

singlepix
1638

4096
50.0

0.5
-

8.5s
(0.3)

-
89.8s

(0.3)
287.3s

(0.3)
B

all64
singlepix

1638
4096

50.0
10.0

4.0s
(6.1)

2.8s
(6.1)

286.6s
(6.3)

26.1s
(6.1)

287.4s
(6.1)

L
ogo64

singlepix
1638

4096
50.0

0.5
1.0s

(0.3)
6.7s

(0.3)
202.4s

(0.3)
57.8s

(0.3)
280.6s

(0.3)
L

ogo64
singlepix

1638
4096

50.0
10.0

3.1s
(5.8)

3.0s
(5.9)

-
25.7s

(5.8)
288.0s

(5.8)
M

ug128
singlepix

4770
16384

50.0
0.5

-
93.1s

(1.9)
-

1773.3s
(1.9)

4333.4s
(1.9)

M
ug128

singlepix
4770

16384
50.0

10.0
4398.9s

(37.7)
122.1s

(37.7)
3222.0s

(38.4)
411.5s

(37.7)
3228.3s

(38.1)
m

ug05
12

12
12410

24820
0.3

0.5
0.7s

(1684.8)
1.1s

(1684.8)
3.9s

(1685.7)
14.6s

(1684.8)
7.1s

(1685.8)
m

ug05
12

12
12410

24820
0.3

10.0
0.3s

(30353.9)
0.8s

(30353.9)
0.7s

(30354.0)
5.4s

(30359.5)
0.7s

(30354.0)
peppers025

12
12

16384
65536

0.2
0.5

4.9s
(4140.1)

8.0s
(4140.0)

19.5s
(4164.7)

55.6s
(4139.6)

43.0s
(4165.0)

peppers025
12

12
16384

65536
0.2

10.0
3.7s

(76191.3)
7.4s

(76191.3)
3.6s

(76191.9)
13.3s

(76208.9)
7.7s

(76192.3)
peppers05

12
12

32768
65536

0.1
0.5

2.8s
(4606.4)

5.3s
(4606.3)

12.4s
(4607.2)

33.1s
(4606.2)

23.7s
(4607.8)

peppers05
12

12
32768

65536
0.1

10.0
1.8s

(82701.4)
4.7s

(82701.4)
2.1s

(82701.4)
15.0s

(82742.0)
2.1s

(82701.4)
finance1000

30465
216842

0.1
0.5

114.1s
(2881.6)

135.9s
(2881.9)

3943.4s
(2883.0)

7926.0s
(2895.8)

-
finance1000

30465
216842

0.1
10.0

33.1s
(26462.7)

53.6s
(26461.5)

402.4s
(26463.0)

2555.1s
(26453.7)

-
financebigram

30465
5845762

<
0.1

0.5
2005.6s

(321.0)
4920.0s

(322.5)
-

-
-

financebigram
30465

5845762
<

0.1
10.0

1841.0s
(4718.2)

5027.3s
(4727.5)

-
-

-
phonecalls

209432
209432

2e-5
0.5

141.5s
(231207.0)

1172.1s
(220253.0)

708.0s
(231206.0)

-
-

phonecalls
209432

209432
2e-5

10.0
34.0s

(281732.0)
101.5s

(280254.0)
382.0s

(281762.0)
-

-

Table
4.2:

A
subset

of
the

experim
ents

for
L

1 -regularized
least

squares
(L

asso).
D

ataset
Statistics:

n
(num

ber
of

sam
ples),

d
(num

ber
of

features),%
non-zeros

in
A

.
λ:

For
each

datasetw
e

tested
λ

=
0
.5

and
λ

=
10
.0.

R
esults:

For
each

algorithm
,the

leftcolum
n

show
s

running
tim

e
in

seconds,and
the

rightcolum
n

show
s

the
objective

value
achieved.T

he
fastestqualified

tim
e

is
show

n
in

bold
face.A

lgorithm
s

term
inate

atdifferentobjective
values

due
to

intrinsic
differences

in
term

ination
conditions.W

e
only

include
results

in
w

hich
an

algorithm
cam

e
w

ithin
25%

ofthe
bestobjective

found
by

any
otheralgorithm

.Joseph
B

.:Should
w

e
include

ρ
or

P
∗

in
this

table?

74

most algorithms failed to converge anywhere near the ranges plotted in Fig. 4.3. The largest dataset,
whose features are occurrences of bigrams in financial reports [Kogan et al., 2009], has 5 million features
and 30K samples. On this dataset, Shooting converges but requires ∼ 4900 seconds, while Shotgun
takes < 2000 seconds.

On the Single-Pixel Camera datasets, Shotgun (P = 8) is slower than Shooting. In fact, it is surprising
that Shotgun converges at all with P = 8, for the plotted datasets all have P∗ = 1. Fig. 4.2 shows
Shotgun with P > 4 diverging for the Ball64 singlepixcam dataset; however, after the practical
adjustments to Shotgun used to produce Fig. 4.3, Shotgun converges with P = 8.

Among the other solvers, L1 LS is the most robust and even solves some of the Large, Sparse Datasets.

It is difficult to compare optimization algorithms and their implementations. Algorithms’ termination cri-
teria differ; e.g., primal-dual methods such as L1 LS monitor the duality gap, while Shotgun monitors
the change in x. Shooting and Shotgun were written in C++, which is generally fast; the other algo-
rithms were in Matlab, which handles loops slowly but linear algebra quickly. Therefore, we emphasize
major trends: Shotgun robustly handles a range of problems; Theorem 4.3.2 helps explain its speedups;
and Shotgun generally outperforms published solvers for the Lasso.

4.5.2 Sparse Logistic Regression

For logistic regression, we focus on comparing Shotgun with Stochastic Gradient Descent
(SGD) variants. SGD methods are of particular interest to us since they are often considered to be very
efficient, especially for learning with many samples; they often have convergence bounds independent of
the number of samples.

For a large-scale comparison of various algorithms for sparse logistic regression, we refer the reader to
the recent survey by Yuan et al. [2010]. On L1 logreg [Koh et al., 2007] and CDN [Yuan et al., 2010],
our results qualitatively matched their survey. Yuan et al. [2010] do not explore SGD empirically.

Implementation: Shotgun CDN

Our version of Shotgun for sparse logistic regression is based on the sequential Coordinate Descent
Newton (CDN) method proposed by Yuan et al. [2010]. Their algorithm performs cyclic coordinate
descent on the L1-regularized logistic loss function, but instead of first-order gradient descent, it uses the
second-order Newton method. (There is no closed-form solution for coordinate minimization for logistic
loss.) On iteration t, for each coordinate j, CDN solves a second-order approximation of the objective
function F :

x
(t+1/2)
j ←− x(t)

j + min
z

{
|x(t)
j + z| − |x(t)

j |+ F ′jz +
1

2
F ′′j z

2
}
, (4.13)

where we abbreviate F ′j
.
= ∂

∂xj
F (x(t)) and F ′′j

.
= ∂2

∂x2j
F (x(t)). This equation has a closed form “soft-

thresholding” solution:
x
t+1/2
j ←− x(t)

j + S
(

1− F ′j , F ′′j x
(t)
j

)
/F ′′j , (4.14)

where S(y, h) = sign(y)(|y|−h)+. To guarantee that the objective decreases, the new value x(t)
j is chosen

via a standard backtracking line search which terminates once a sufficient decrease condition is reached.
To improve performance, CDN maintains an active set of weights. Weights in the active set are allowed to

75

become non-zero, but weights outside the set remain set to zero. We refer the reader to Yuan et al. [2010]
for more details. We refer to this sequential algorithm as Shooting CDN.

Shotgun CDN, our parallel version of Shooting CDN, executes the coordinate minimizations in
Eq. (4.14) in parallel. After each cycle of coordinate minimizations, the active set of weights is updated
sequentially. Alg. 4.4 outlines the Shotgun CDN algorithm.

As Yuan et al. [2010] show empirically for sparse logistic regression, their CDN method is often orders
of magnitude faster than the basic Shooting algorithm (Alg. 4.1), which uses a fixed step size and no
active set. We note that our analysis uses a fixed step size and does not consider the effects of a line search.
However, we find empirically that Shotgun CDN is an efficient and robust algorithm.

Algorithm 4.4: Shotgun CDN

Input: Data A ∈ Rn×d, y ∈ Rn; scalar λ ≥ 0
Set x = 0 ∈ Rd+
Set active-set = x
while not converged do

Assign weights in active-set to processors.
In parallel on P processors do

Get assigned weight j.
Set xt+1/2

j as in Eq. (4.14).
Execute back-tracking line search to set xt+1

j .

Update active-set by removing all coordinates j s.t. x(t)
j = 0 and F ′j is small.

Other Algorithms

SGD iteratively updates x in a gradient direction estimated with one sample and scaled by a learning rate.
We implemented SGD in C++ following, e.g., Zinkevich et al. [2010]. We used lazy shrinkage updates
[Langford et al., 2009a] to make use of sparsity in A. Choosing learning rates for SGD can be challenging.
In our tests, constant rates led to faster convergence than decaying rates (decaying as 1/

√
T). For each

test, we tried 14 exponentially increasing rates in [10−4, 1] (in parallel) and chose the rate giving the best
training objective. We did not use a sparsifying step for SGD.

SMIDAS [Shalev-Schwartz and Tewari, 2009] uses stochastic mirror descent but truncates gradients to
sparsify x. We tested their published C++ implementation.

Parallel SGD refers to the work by Zinkevich et al. [2010], which runs SGD in parallel on different
subsamples of the data and averages the solutions x. We tested this method since it is one of the few
existing methods for parallel regression, but we note that Zinkevich et al. [2010] did not address L1

regularization in their analysis. We averaged over 8 instances of SGD.

See Sec. 4.4 for more information on these algorithms.

Results

Fig. 4.4 plots training objectives and test accuracy (on a held-out 10% of the data) for two large datasets.

76

The zeta dataset 4 illustrates the regime with n� d. It contains 500K samples with 2000 features and is
fully dense in A. SGD performs well and is fairly competitive with Shotgun CDN (with P = 8).

The rcv1 dataset 5 [Lewis et al., 2004] illustrates the high-dimensional regime (d > n). It has about
twice as many features (44504) as samples (18217), with 17% non-zeros in A. Shotgun CDN (P = 8)
was much faster than SGD, especially in terms of the objective. Parallel SGD performed almost
identically to SGD.

Though convergence bounds for SMIDAS are comparable to those for SGD, SMIDAS iterations take much
longer due to the mirror descent updates, which require O(d) exponentiations. To execute 10M updates
on the zeta dataset, SGD took 728 seconds, while SMIDAS took over 8500 seconds.

Note that Fig. 4.4 confirms the predictions in Sec. 4.4.2 about SCD and SGD’s relative performances within
different regimes. In the high-n regime (zeta), SGD initially outperforms SCD (Shooting CDN) but
is then overtaken. In the high-d regime (rcv1), SCD outperforms SGD.

These results highlight how SGD is orthogonal to Shotgun: SGD can cope with large n, and Shotgun
can cope with large d. A hybrid algorithm might be scalable in both n and d and, perhaps, be parallelized
over both samples and features.

4.5.3 Speedup of Shotgun

To study the speedup of Shotgun Lasso and Shotgun CDN, we ran both solvers on our datasets
with varying λ, using varying P (number of parallel updates = number of cores). We recorded the running
time as the first time when an algorithm came within 0.5% of the optimal objective, as computed by
Shooting.

Fig. 4.5 shows results for both speedup (ratio of sequential/parallel running time) and iteration speedup
(ratio of sequential/parallel iterations until convergence). The iteration speedups match Theorem 4.3.2
quite closely. However, relative speedups in iterations (about 8×) are not matched by speedups in running
time (about 2× to 4×). Running more updates in parallel slows down each update.

We thus discovered that speedups in time were limited by low-level technical issues. To understand the
limiting factors, we studied how the relative parallel performance was affected by artificial modifications
to the algorithm code. We list two important tests here and refer the reader to the supplement for more
details.

First, recall that each weight update requires an atomic update to the shared Ax vector. We tested a version
of the algorithm which did not protect the shared Ax vector from concurrent modifications, but this
change did not make iterations run much faster, indicating that atomic updates did not harm performance
much.

Second, we increased the computational complexity of the algorithm by evaluating a trigonometric func-
tion several times for each weight update and noticed that the parallel speedup improved very quickly
when the computation per update was increased. This result indicated that the ratio of floating point op-
erations to memory accesses was too low. Since each update uses a different column of A, data accesses
have no temporal locality, so this ratio is only O(1).

4The zeta dataset is from the Pascal Large Scale Learning Challenge: http://www.mlbench.org/instructions/
5Our version of the rcv1 dataset is from the LIBSVM repository [Chang and Lin, 2001].

77

http://www.mlbench.org/instructions/

Our experiments showed that the parallel performance was limited by us hitting the memory wall [Wulf
and McKee, 1995]: memory bus bandwidth and latency proved to be the most limiting factors. We
further validated these conclusions by monitoring hardware performance counters provided by the Linux
performance monitoring interface. The counters showed that the amount of CPU cache misses was very
large in comparison to the mathematical instructions executed.

4.6 Discussion

We introduced Shotgun, a simple parallel algorithm for L1-regularized loss minimization. Our conver-
gence results for Shotgun are the first such results for parallel coordinate descent with L1 regularization.
Our bounds predict near-linear speedups, up to an interpretable, problem-dependent limit. In experiments,
these predictions matched empirical behavior.

Extensive comparisons showed that Shotgun outperforms state-of-the-art L1 solvers on many datasets.
Though hardware constraints somewhat limited speedups, future hardware and algorithmic improvements
may permit even greater scaling. We believe that, currently, Shotgun is one of the most efficient and
scalable solvers for L1-regularized problems.

Code, Data, and Benchmark Results: http://www.select.cs.cmu.edu/projects

4.7 Future Work

Our initial work on Shotgun demonstrated a method for exposing the potential for multicore paral-
lelization inherent in a certain class of optimization problems. We believe our ideas can be used much
more generally. In this section, we propose extensions to (a) the algorithm, to maximize benefits from
parallelization (Sec. 4.7.1), (b) the analysis, to discover other model classes for which Shotgun is appli-
cable (Sec. 4.7.2), and (c) the computing platform, to explore other platforms with alternative hardware
constraints (Sec. 4.7.3 and Sec. 4.7.4).

4.7.1 Generalized Shotgun Algorithm

An adaptive version of Shotgun might permit greater parallelism or faster convergence. For example,
after computing updates in parallel, an additional step could re-weight updates to eliminate harmful con-
flicts. Another type of adaptivity could involve pre-processing to optimize the order in which coordinates
are updated. Some similar ideas are explored by Scherrer et al. [2012a,b], who discuss an extra step for
choosing updates to commit, as well as pre-processing to find blocks of highly correlated features.

The Shotgun algorithm itself could also be generalized to interpolate between coordinate descent and
full-gradient descent in order to trade off total computation and parallelism. As noted in Sec. 4.3, our
analysis of Shotgun involving P (the number of coordinates updated in parallel) indicates that we can
increase P and decrease the (fixed) step size while still guaranteeing convergence. Shotgun represents
one extreme of this spectrum, with a smaller number of coordinate updates (providing less opportunity
for parallelization) but a larger step size (resulting in less total computation empirically). At the other
extreme, we could update all coordinates at once while decreasing the step size by P/d (without duplicated

78

http://www.select.cs.cmu.edu/projects

features). Understanding this trade-off would let us automatically tailor Shotgun to different platforms,
from CPUs with few cores to Graphics Processing Units (GPUs) with many cores.

4.7.2 Analysis for Other Models

There are many learning problems related to the Lasso and sparse logistic regression, such as the graph-
ical Lasso [Friedman et al., 2008], which have similar but more complicated structures. Generalizing
Shotgun to objectives with more structure would be useful in practice and would shed light on how
structure affects the inherent parallelism within problems. Also, more complex objectives requiring more
operations per value loaded from memory could help to hide memory latency, giving better speedups for
Shotgun.

4.7.3 Shotgun on Graphics Processing Units (GPUs)

General-purpose Graphics Processing Units (GPUs) are very cheap and powerful platforms for parallel
computing, and they are rapidly developing in both speed and support for more general computation. To
achieve max throughput, however, GPU code must be carefully designed to use the Single Instruction
Multiple Data (SIMD) architecture. Our initial tests indicate potential for success but also the need for
careful engineering to take full advantage of the hundreds of cores on modern GPUs.

Several recent works in machine learning have used GPUs for applications such as object detection [Coates
et al., 2009], deep belief networks [Raina et al., 2009], and belief propagation [Grauer-Gray et al., 2008].
The largest speedups are achieved when the learning problem decomposes according to the GPU architec-
ture; e.g., object detection works on images using operations similar to those for which GPU architecture
was originally developed.

Background: GPU Architecture and CUDA

We give a very brief overview of NVIDIA GPU architecture and the NVIDIA CUDA extensions to the C
language. Other GPU architectures, such as those from ATI, are somewhat different but are still optimized
for graphics processing (e.g., vector/matrix operations).

Our initial experiments used a somewhat outdated NVIDIA Tesla C1060 GPU. The C1060 has 240 cores,
called streaming processors. These cores are divided into sets of 8, each of which forms a streaming
multiprocessor (SMP). Within a SMP, the 8 cores must operate in lockstep, executing the same instruction;
branch divergence is handled by serializing the branches and so is very expensive. In theory, the C1060
can achieve about 933 GFLOPS.

A CUDA program running on a GPU is called a kernel, and it can consist of tens of thousands of threads.
Threads are grouped into several thread blocks. Each thread block runs on a single SMP, and within that
block, threads can communicate relatively cheaply. Threads in different blocks can only communicate via
very expensive synchronizations. When a kernel is run, CUDA gives very few guarantees on the order in
which blocks are executed and on the order in which threads within a block are executed. These constraints
permit very fast execution for embarrassingly parallel applications but place significant restrictions on the
types of computation a kernel can perform.

79

The Tesla C1060 memory hierarchy contains several levels of memory, the most important of which are
global memory and shared memory. Global memory is the largest (about 4 GB total) and slowest, is
accessible to all threads, and is optimized for coalesced accesses. Shared memory is small (about 16 KB
per SMP) but very fast, and each thread block is given a separate space in this memory. A CPU thread can
read from and write to the GPU global memory, but these operations are very expensive.

To achieve optimal performance, an application must avoid branch divergence within thread blocks, use
coalesced accesses to global memory, minimize use of registers, and use thousands of threads.

Initial Tests

We have run initial tests of Shotgun on the GPU which indicate that Shotgun can indeed be extended to
the GPU. However, we will need to do significant tuning to ensure efficient use of GPU memory. Our
implementation of Shotgun on the GPU differs from that on the CPU in several aspects. GPU Shotgun
operates synchronously (while the CPU version is asynchronous) and thus better matches the analysis in
Sec. 4.3.1. GPU Shotgun uses multiple threads per coordinate update (while the CPU version uses one
thread per coordinate update); the number of threads varies based on the sparsity of the variable’s column
in the design matrix A and can be as large as one thread block.

Our currently unimpressive results for GPU Shotgun can largely be explained in terms of memory latency
and load balancing. GPUs require a certain number of FLOPs per memory access in order to hide mem-
ory latency (about 10 FLOPs per float on the Tesla C1060, as a general rule of thumb). For Shotgun,
too few operations are required for each variable update to hide latency in our current implementation.
Results from profiling GPU Shotgun indicate that actual memory bandwidth usage is generally far from
the maximum possible.

In many of the sparse datasets we have tested, the sparsity of columns of design matrices A varies greatly,
with some columns having many more non-zero elements than average. These denser columns take a
disproportionate amount of the running time, sometimes up to about 95%. Better load balancing, perhaps
by using multiple thread blocks for one dense column, could alleviate this problem.

We have tested several other optimizations which might prove useful for GPU Shotgun, including block
coordinate descent, choosing coordinates to update based on a graph coloring (rather than stochastically),
and handling dense columns in A sequentially.

4.7.4 Shotgun in the Distributed Setting

We have also considered extensions of Shotgun and other sparse regression algorithms to the distributed
setting, in which communication constraints become a major bottleneck. Based on our initial experiments,
we believe that a simple adaptation of Shotgun is impractical, for coordinate updates require far too little
computation to hide communication latency.

We list two ideas which look promising based on initial theoretical exploration and experiments with
simulated parallel execution.

• Hybrid Shotgun algorithms: We could combine an existing distributed algorithm with Shotgun;
the distributed algorithm would take advantage of distributed parallelism, and Shotgun would use
multicore parallelism on each compute node. Many distributed algorithms split examples and/or

80

features among compute nodes, each of which has a local subproblem which is a sparse regression-
style problem (solvable using Shotgun). Some potentially useful distributed algorithms include:

Parallel SGD, such as the method analyzed by Zhang et al. [2012], Zinkevich et al. [2010],
splits examples across compute nodes. Existing analysis should be easy to apply, where we
replace SGD with Shotgun on each compute node.

ADMM: Alternating Directions Method of Multipliers [Boyd et al., 2011a, Parikh and Boyd,
2012], discussed in Sec. 4.4.5, may split examples and/or features across compute nodes.

• Sparsifying communication: Methods such as ADMM which iteratively communicate between com-
pute nodes generally achieve better results and guarantees than methods such as Zinkevich et al.
[2010] which use no communication (except at the end). However, ADMM and most similar meth-
ods for sparse regression require communicating dense vectors of total length O(d) (number of
features) or O(n) (number of examples), limiting their scalability. Modifying ADMM to use sparse
communication is non-trivial but could permit much greater scaling. One possible method would
be to distribute the sparsifying L1 penalty term, but this modification can make it difficult to prove
convergence. Another possibility is to communicate changes in vectors rather than the vectors them-
selves, as well as applying truncation to promote sparsity; balancing error and sparsity introduced
by truncation would require careful analysis.

Joseph B.: I removed discussion of GPU GraphLab.

81

1 10 100

1

10

100

O
th

e
r

a
lg

.
ru

n
ti
m

e
 (

s
e

c
)

Shotgun runtime (sec)

Shotgun faster

Shotgun slower

1 10 40

1

10

40

O
th

e
r

a
lg

.
ru

n
ti
m

e
 (

s
e

c
)

Shotgun runtime (sec)

Shotgun faster

Shotgun slower

(a) Sparco (b) Single-Pixel Camera
P∗ ∈ [1, 8683], avg 1493 P∗ = 1

1 10 44

1

10

44

O
th

e
r

a
lg

.
ru

n
ti
m

e
 (

s
e
c
)

Shotgun runtime (sec)

Shotgun faster

Shotgun slower

10 100 1000 800010

100

1000

8000

O
th

er
 a

lg
. r

un
tim

e
(s

ec
)

Shotgun runtime (sec)

Shotgun	
faster	

Shotgun	 slower	

(c) Sparse Compressed Img. (d) Large, Sparse Datasets
P∗ ∈ [1432, 5889], avg 3844 P∗ ∈ [107, 1036], avg 571

1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

Shooting

L1_LS

FPC_AS

GPSR_BB

SpaRSA

Hard_l0

1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

Shooting

L1_LS

FPC_AS

GPSR_BB

SpaRSA

Hard_l0

1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

Shooting

L1_LS

FPC_AS

GPSR_BB

SpaRSA

Hard_l0

1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

Shooting

L1_LS

FPC_AS

GPSR_BB

SpaRSA

Hard_l0

1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

Shooting

L1_LS

FPC_AS

GPSR_BB

SpaRSA

Hard_l0

1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

Shooting

L1_LS

FPC_AS

GPSR_BB

SpaRSA

Hard_l0

Figure 4.3: Runtime comparison of algorithms for the Lasso on 4 dataset categories. Each marker
compares an algorithm with Shotgun (with P = 8) on one dataset and λ ∈ {0.5, 10}. The Y-axis is that
algorithm’s running time; the X-axis is Shotgun’s (P=8) running time on the same problem. Markers
above the diagonal line indicate that Shotgun was faster; markers below the line indicate Shotgun was
slower.

82

0 500 1000

10
5.2

10
5.3

10
5.4

Time (sec)

O
bj

ec
tiv

e
va

lu
e

Shooting CDN

SGD Parallel SGD

Shotgun CDN

10

6000

7000

8000

Time (log scale, secs)
O

bj
ec

tiv
e

va
lu

e

SGD

Shooting CDN

Shotgun CDN

500 1000

0.1

0.15

Time (sec)

E
rr

or
 (

he
ld

−
ou

t d
at

a)

Shooting CDN

SGD
Parallel SGD

Shotgun CDN

10
0.04

0.045

0.05

Time (log scale, secs)

E
rr

or
 (

he
ld

−
ou

t d
at

a) Shooting CDN

SGD

Shotgun CDN

zeta with λ = 1 rcv1 with λ = 1
d = 2000, n = 500, 000 d = 44504, n = 18217

Figure 4.4: Sparse logistic regression on 2 datasets. The top plots trace training objectives over time; the
bottom plots trace classification error rates on held-out data (10%). On zeta (n � d), SGD converges
faster initially, but Shotgun CDN (P=8) overtakes it. On rcv1 (d > n), Shotgun CDN converges
much faster than SGD; Parallel SGD (P=8) is hidden by SGD. (Note the log scale for rcv1.) Joseph
B.: Standardize colors in plots. Joseph B.: Do cross-val to choose lambdas.

83

1 2 4 6 8
0

2

4

6

Number of cores

S
pe

ed
up

Best

Mean

Worst
10 100 1000

2

3

4

5

6

7

8

9

Dataset P*
Ite

ra
tio

n
sp

ee
du

p

P=8

P=4

P=2

(a) Shotgun Lasso runtime speedup (b) Shotgun Lasso iteration speedup

1 2 4 6 8
0

1

2

3

4

5

Number of cores

S
pe

ed
up

Best
Mean

Worst

10 100
2
3
4
5
6
7
8
9

10

Dataset P*

Ite
ra

tio
n

sp
ee

du
p

P=2

P=4

P=8

(c) Shotgun CDN runtime speedup (d) Shotgun CDN iteration speedup

Figure 4.5: Speedup analysis. (a,c) Speedup in running time for Shotgun Lasso and
Shotgun CDN (sparse logistic regression). Mean, min, and max speedups over datasets from Sec. 4.5.
(b,d) Speedup in iterations until convergence as a function of P∗, for each dataset in Sec. 4.5. Both
Shotgun instances exhibit almost linear speedups w.r.t. iterations. Joseph B.: We should make the
y-axes the same for Lasso and logreg.

84

Chapter 5

Conclusions

This thesis has examined Conditional Random Fields, one of the most flexible and empirically successful
classes of probabilistic models. We argued that, while traditional learning methods often scale poorly
on large problems, we can achieve much greater scaling using alternative learning methods based on
two guiding principles: decomposition and trade-offs. Decomposition refers to simplifying a learning
problem by breaking it down into smaller, easier subproblems. Trade-offs refers to balancing sample
complexity, computational complexity, and potential for parallelization, one of which may often be traded
for another.

We proved this thesis statement by developing novel techniques for parameter learning, structure learn-
ing, and regression. In Ch. 2, we examined two parameter learning methods, composite likelihood (and
the special case of pseudolikelihood) and the canonical parameterization of Abbeel et al. [2006]. Both
methods decompose the learning problem into many smaller subproblems of regressing one (or a subset)
of the variables on its Markov blanket. Our empirical results show how this decomposition permits much
faster learning than the original problem (maximum-likelihood estimation). Moreover, our analysis of
composite likelihood in particular reveals a large class of models which are efficiently (PAC) learnable.
Our bounds indicate an enormous potential for optimizing trade-offs in learning. Composite likelihood
estimator structure may be chosen to achieve low sample complexity while simultaneously maintaining
tractable computation (inference) and simple parallelization. In addition, the choices of joint and disjoint
optimization allow trade-offs between sample complexity and parallelism.

In Ch. 3, we presented initial results applying these themes to structure learning. Our method, based
on the Chow-Liu algorithm for MRFs [Chow and Liu, 1968], primarily spends computation on edge
weights, which may be computed independently for every possible edge in the model. This decomposition
makes the task of structure learning mostly data parallel. While we do not yet have strong theoretical
guarantees for this method, we showed it to be empirically useful, and we detailed several paths for
improvement.

In Ch. 4, we discussed regression, one of the key components of our parameter and structure learning
methods. We proposed the Shotgun algorithm, a simple parallel coordinate descent method. Our method
decomposes a multi-coordinate update into disjoint coordinate updates. As we increase the number of par-
allel updates, we risk more conflicts (resulting in more total computation required for convergence) but
gain in parallelism. We demonstrated theoretically and empirically that it is easy to set the number of par-
allel updates to ensure that this trade-off is near-optimal; thus, Shotgun achieves near-linear speedups,

85

though it was hampered by hardware constraints in our tests. Nevertheless, our extensive experiments
showed Shotgun to be one of the most scalable existing algorithms for sparse regression.

In the following sections, we discuss two major ideas which integrate with our themes of decomposition
and trade-offs. The first idea is taking advantage of model structure and locality in order to decompose
learning problems (Sec. 5.1). The second idea is developing methods which automatically adapt to the
learning problem, allowing improved trade-offs in learning (Sec. 5.2). These ideas generalize beyond our
problems, and we believe that they will become increasingly important in machine learning.

We end by presenting a roadmap for learning MRFs and CRFs (Sec. 5.3). Our roadmap serves two
purposes. First, we provide a guide for the practitioner who needs to figure out the best methods for
his learning problem. Second, we discuss areas in need of improvement and with open questions. This
discussion helps to place our CRF learning methods within a broader context, indicating both the areas in
which our methods apply and the areas in which other methods might be preferable.

5.1 Model Structure and Locality

Our methods all attempt to simplify learning by using the structure and locality properties of the model
being learned. Locality properties permit us to decompose (and simplify) learning problems.

In parameter learning, the methods we consider—pseudolikelihood, composite likelihood, and the canon-
ical parameterization—are essentially regressing one (or a subset) of variables on the rest of the model.
Each of these regression problems is defined according to the model parameterization and structure: only
local factors and neighboring variables are involved in the regression. Moreover, these methods essen-
tially work when influence is local within the model. That is, regressing one variable on its neighbors (in
pseudolikelihood) gives a reasonable estimate of the local parameters when far-away parts of the model
have little influence on that variable.

Similarly, our method for structure learning is based on the idea of local influence. Our Score Decay
Assumption (Sec. 3.2.2) encodes this idea: scores, which measure influence between variables, should
decay with distance in a model. We also use the idea of evidence locality, where direct interactions
between output and input variables (via factors) are limited by restricting the number of input variables
participating in each factor.

For parallel regression, our Shotgun algorithm is able to perform independent coordinate updates be-
cause of problem-specific limits on the interaction between features. This concept of locality is different
than the graph-structured concept of locality used for CRF parameter and structure learning: even if a
feature interacts with every other feature, limits on interaction strength can still isolate that feature.

Other researchers have also discussed decomposing problems based on concepts of structure and locality,
especially for the sake of parallelization. For example, GraphLab [Low et al., 2010] uses the computa-
tional structure of problems for parallelization. Other works, such as recent analyses of parallel stochastic
gradient descent [Zhang et al., 2012, Zinkevich et al., 2010], use statistical analyses to show how to par-
allelize problems. We believe our work on CRF parameter learning is one of the first efforts at taking
advantage of both computational and statistical structure to permit parallel optimization. Future work on
scalable machine learning will undoubtedly require similar joint analyses of both types of structure.

86

5.2 Model- and Data-Specific Methods

All of our work indicates the importance of designing methods which adapt to the model being learned or
the training data. Adaptation can often be phrased as focusing learning on the parts of the problem which
are hardest.

In our work on parameter learning, the success of composite likelihood was due to how the structure of
composite likelihood estimators could conform to model structure and the correlations evident in the train-
ing data. Methods such as pseudolikelihood and the canonical parameterization are much less structured,
so they cannot adapt as well to the model or data, hurting their performance. While pseudolikelihood
and the canonical parameterization make the same approximations across the entire model, composite
likelihood estimators can be structured to make fewer approximations in more important areas.

In our structure learning method, certain edge weights tended to work well on particular models (e.g., DCI
with weaker Y − Y factors and local CMI with weaker Y −X factors). Our results indicate that, for our
edge weight-based learning method to succeed in general, the method will need to choose an edge weight
according to correlations in the data.

In our work on parallel regression, the number of parallel updates must be chosen according to the data.
Certain datasets permit many parallel updates, while others require sequential updates. The extensions
to our work in Scherrer et al. [2012a,b] (discussed in Sec. 4.4.5) further tailor learning to each dataset,
improving the speed of convergence. Their work explicitly separates coordinates into correlated and
uncorrelated groups (which are hard and easy, respectively, to optimize in parallel).

Other researchers have made related observations, often phrased in terms of focusing learning (or infer-
ence) on harder parts of models. For example, prediction cascades [Viola and Jones, 2001, Weiss and
Taskar, 2010] use rough, simple models for classifying easy examples and finer, more complex models for
hard examples. Splash sampling [Gonzalez et al., 2011] focuses inference on boundary regions in graphi-
cal models for image denoising. However, we believe that our work is one of the first to present a method
which uses adaptation to optimize all three criteria of sample complexity, computational complexity, and
potential for parallelism.

5.3 Roadmap for Learning MRFs and CRFs

This section presents a roadmap for practitioners for learning MRFs and CRFs. Sec. 5.3.1 compares
parameter learning methods. Sec. 5.3.2 augments this discussion with lists of questions and answers to
help practitioners identify the important aspects of their learning problem and choose the appropriate
parameter learning method for their setting. Likewise, Sec. 5.3.3 compares structure learning methods,
and Sec. 5.3.4 helps guide practitioners in choosing a method for their problem.

These discussions highlight many gaps in the current literature. Many algorithms have been proposed, but
too few comparisons exist to state which methods are best. Our discussion of parameter learning is heavily
biased towards the methods discussed in this thesis; we hope to do more comparisons with other methods
in the future. Structure learning remains a particularly difficult problem, with many open questions.

87

5.3.1 Parameter Learning Methods

We divide our discussion of parameter learning methods into three parts: core methods, inference, and
optimization. This division is not exact, for some methods in the literature are designed for particular
types of inference or optimization. However, as we mention in Sec. 6.1, we hope that the field develops
towards interchangeable parts so that the practitioner may select a core method, a type of inference, and
an optimization method which work together well and fit the practitioner’s learning problem.

Core methods

• Supervised methods

Methods in this thesis: Maximum likelihood, composite likelihood, and pseudolikelihood es-
timation (MLE, MCLE, MPLE, respectively)

− These methods refer to the loss used; e.g., “maximum likelihood” refers to the log loss
over the full model.

− As shown in Ch. 2, MLE, MCLE, and MPLE form a range of methods (in that order).
MLE makes the most of the data (achieving the best sample complexity or estimation
error) and is the best with misspecified models, but it requires the most computation.
MPLE is the opposite, and MCLE spans the range in between.

Other scalable optimization-based methods: Piecewise likelihood [Sutton and McCallum,
2005], Contrastive divergence [Hinton, 2002], SampleRank [Wick et al., 2011], Score match-
ing [Hyvärinen, 2005], Ratio matching [Hyvärinen, 2007]

− To our knowledge, no works have done broad analytical or empirical comparisons of
these many other scalable methods with MLE, MCLE, and MPLE. A broad comparison
would be invaluable for understanding how these methods relate to each other and which
methods are best in different learning settings.

• Semi-supervised methods: posterior regularization [K. Ganchev and Taskar, 2010], generalized ex-
pectation [McCallum et al., 2007], expectation-maximization [Baum et al., 1970, Dempster et al.,
1977]

Note: The above list does not include the matching-based methods discussed in Sec. 6.1 (the method of
moments [Cam, 1986] and the canonical parameterization (Sec. 2.6)). While these methods show promise
(e.g., method of moments for probabilistic topic models [Anandkumar et al., 2012]), we are unaware of
large-scale comparisons showing these methods to be empirically competitive with optimization-based
methods.

Inference

• Exact: Exact inference is ideal in terms of accuracy but generally intractable. Interesting work has
been done on speeding up exact inference with arithmetic circuit representations (e.g., Darwiche
[2003], Lowd and Domingos [2008]), as well as formulations as min-sum matrix products [Felzen-
szwalb and McAuley, 2011].

• Approximate: We list some sampling and variational inference methods. Both have been used
successfully for fast learning, and it is unclear which is best in different learning settings.

88

Sampling: Gibbs sampling [Geman and Geman, 1984], structured Gibbs sampling [Asuncion
et al., 2010], and more general Markov Chain Monte Carlo methods

− In general, sampling methods are unbiased (i.e., compute the correct marginals), but only
in the infinite-sample limit.

− The stochasticity introduced by sampling can be useful when the loss is not convex, as in
deep learning (e.g., [Le et al., 2011]).

Variational: Belief propagation [Pearl, 1988], structured versions of belief propagation (e.g.,
Gonzalez et al. [2009], Wainwright et al. [2005]), and other variational methods

− In general, variational inference is biased, but it can converge quickly and can come with
run-time guarantees on accuracy.

− Since variational inference may be phrased as (sometimes convex) optimization, ideas
and tools from the optimization literature can speed up inference (e.g., Hoffman et al.
[2012]).

Optimization

• Batch vs. stochastic: Stochastic gradient methods are most useful with large training sets.

• Coordinate vs. full gradient: Coordinate descent is primarily useful with decomposable objectives,
such as pseudolikelihood and composite likelihood, and with some types of variational inference
which effectively decompose the objective (e.g., Hoffman et al. [2012]). When (exact or approxi-
mate) inference is run over the full model, the cost of inference is often large enough to outweigh
the remaining computation required to compute the full gradient.

• First-order vs. second-order: First-order methods tend to be simpler to implement, but second-
order methods, especially ones which approximate the Hessian (e.g., Liu and Nocedal [1989]),
can be more efficient. Since inference is often the bulk of the computation in learning, the extra
computation required by second-order methods may be minor.

Note: Hybrid methods which combine multiple techniques can sometimes take better advantage of each
technique’s optimal learning regime. For example, using pseudolikelihood (optimized only partway, not
to completion) to initialize a max likelihood solution can be useful: pseudolikelihood can find a rough es-
timate of parameters quickly, avoiding many expensive iterations of max likelihood. Likewise, optimiza-
tion with stochastic gradient descent can reach a rough approximation quickly, and a batch second-order
method (with fast local convergence) can be used to reach the optimum.

5.3.2 Guide for Practitioners: Parameters

We divide this guide according to aspects of the learning problem: the model, the data, and computational
constraints. We point out a few open questions indicating gaps in the literature.

Model

• Is it a CRF or an MRF? Does the model permit tractable inference? (Does it have low treewidth?)

Tractable MRF: Use MLE (with exact inference). In a junction tree representation, parameters
may be learned without an iterative optimization procedure.

89

Intractable MRF: Two possible options are: (a) optimize log loss with the same approximate
inference method which will be used at test time and (b) use structured composite likelihood.
Option (a) is indicated by Wainwright [2006], but it is unclear if the intuition from that paper
remains correct in other learning problems. Option (b) can be more efficient, but it remains
unclear what type of inference is best at test time after composite likelihood training.

Tractable CRF: For fast training, use MLE (with exact inference) optimized via stochastic gra-
dient descent. The approximate solution from stochastic gradient may be refined by switching
to batch gradient descent in a two-stage optimization.

Intractable CRF: Use structured composite likelihood. For faster training, use stochastic gra-
dient to optimize each composite likelihood component.

• Is the model well-specified? (I.e., does the “true” distribution follow the structure or class of struc-
tures which will be used for learning?)

If the model is not well-specified, then optimizing log loss (instead of pseudolikelihood or
composite likelihood) is best when computationally feasible, for log loss has the lowest ap-
proximation error Liang and Jordan [2008].

• Is the model parameterization convex?

If the optimization problem is non-convex, then methods which introduce stochasticity in
learning, such as stochastic gradient descent and sampling-based inference, may be useful in
avoiding local minima.

• Open questions:

If approximate inference method X will be used at test time, what conditions imply that it is
best to train by optimizing log loss with the same approximate inference method X?

What type of (approximate) inference is best at test time after pseudolikelihood and composite
likelihood training?

For relational models (with templated factors), does the relative performance of the different
estimators change?

Note: Model size (number of variables) seems to be an unimportant factor in choosing a learning method.
The tractability (treewidth) of the model is a better measure of the computational cost; for a fixed treewidth,
the cost of inference scales linearly in the size of the model.

Data

• How many training examples are available?

If the training set is very large and a gradient-based optimization method is being used, then
stochastic gradient descent is a good option for CRFs. For intractable MRFs, stochastic gra-
dient is mainly useful if the time required for approximate inference is outweighed by the
time required to compute a batch estimate of the gradient (after inference); for this situation
to occur, the training set would need to be very large relative to the size of the model.

• Is the problem fully supervised or weakly supervised? (By “weakly” supervised, we mean that the
data or data statistics are only partially observed. This setting includes models with latent variables,
as well as outside knowledge expressed as constraints.)

90

Fully supervised: This thesis uses the supervised setting. Further work is needed to see if
composite likelihood or similar ideas may be applied to the weakly supervised setting.

Weakly supervised: Some very successful approaches include posterior regularization [K. Ganchev
and Taskar, 2010] and generalized expectation [McCallum et al., 2007]. Expectation-maximization
[Baum et al., 1970, Dempster et al., 1977] is simple to implement but can be less effective in
practice. Posterior regularization and generalized expectation are especially useful since they
permit weak supervision via constraints on data statistics, whereas expectation-maximization
is designed for the more limited setting with unobserved variable values.

• Open questions:

Can structured composite likelihood or similar ideas be applied to weakly supervised learning?

Computational Constraints

• How much computational power is available for training?

Less computational power indicates the need for faster training methods, such as pseudolike-
lihood and stochastic gradient optimization.

• Is the computing system distributed?

Decomposable methods such as pseudolikelihood and composite likelihood are especially
useful for distributed computing. Other methods for parallelizing parts of learning, such as
distributed gradient computation or distributed approximate inference (e.g., Gonzalez et al.
[2011]), have been shown to be viable but require much more communication and coordina-
tion between compute nodes.

5.3.3 Structure Learning Methods

We list several classes of structure learning methods. Many of these methods use parameter learning (and
inference and optimization) as subroutines, so our discussion from Sec. 5.3.1 is relevant here.

• Chow-Liu and generalizations: The Chow-Liu algorithm for MRFs [Chow and Liu, 1968] and its
generalizations (e.g., Bradley and Guestrin [2010], Shahaf et al. [2009]) are specialized for finding
low-treewidth (tractable) models.

• Local search: Methods which optimize log loss (or approximations) by making small modifications
to the structure (e.g., Teyssier and Koller [2005], Torralba et al. [2004]) are effective in practice but
lack strong theoretical guarantees. These methods can also be useful for improving initial structures
found by other methods.

• Sparsifying regularization: Methods which optimize a loss (such as log loss or pseudolikelihood)
and impose sparsity (via, e.g., block-L1 regularization) can be fast, effective in practice, and accom-
panied by theoretical guarantees [Ravikumar et al., 2010].

• Constraint-based methods: Methods which create a list of constraints via independence tests and
then find a structure which fits these constraints can come with theoretical guarantees (e.g., Chechetka
and Guestrin [2010]) but are arguably less practical (efficient) than optimization-based methods.

91

5.3.4 Guide for Practitioners: Structure

Model

• Is it a CRF or an MRF? Should the model permit tractable inference (have low treewidth)?

Tractable MRF: For trees, use the Chow-Liu algorithm [Chow and Liu, 1968]. For more
general models, reasonable existing methods include the method from Shahaf et al. [2009] for
learning treewidth-k models and the method from Lowd and Domingos [2008] for learning
arithmetic circuits (which may be high treewidth yet tractable).

Tractable CRF: We believe our generalized Chow-Liu algorithm using Decomposable Condi-
tional Influence for edge weights is effective (Ch. 3), but much work remains to prove theoret-
ical guarantees and discover alternate methods.

Intractable: We recommend block-L1 regularization-based methods (e.g., Ravikumar et al.
[2010], Schmidt et al. [2008]), which are fast, have proven effective in practice, and come
with theoretical guarantees [Ravikumar et al., 2010]. Their results may be improved with
further steps using local search (e.g., Teyssier and Koller [2005], Torralba et al. [2004]).

• Open questions:

What types of methods are best when the model class is well-specified vs. misspecified?

Data

• Open questions:

Are certain learning methods best with small (or large) training sets?

How can weak supervision best be used by structure learning methods?

Computational Constraints

• How much computational power is available for training?

Optimization-based methods such as block-L1-regularized pseudolikelihood can be very effi-
cient. Local search methods can require much more computation if search converges slowly.

• Is the computing system distributed?

Decomposable methods such as block-L1-regularized pseudolikelihood and independence
tests are easily distributed. Local search methods may be more difficult to parallelize.

Special Learning Goals

• Are both parameters and structure being learned?

Constraint-based methods can learn structure without estimating parameters. Optimization-
based methods such as local search and block-L1-regularized pseudolikelihood tend to esti-
mate both jointly.

• Does the structure need to be interpretable?

If recovering a meaningful (and sparse) structure is important, the method from Liu et al.
[2010a] can help with selecting regularization appropriately.

92

Chapter 6

Future Work

In previous chapters, we discussed more detailed future work on extensions to each of our three topics:
CRF parameter learning (Sec. 2.8), CRF structure learning (Sec. 3.6), and parallel regression (Sec. 4.7).
In this section, we discuss four broader goals.

We first discuss long-term projects on parameter learning and parallel regression, respectively. In Sec. 6.1,
we discuss the goal of unified analyses and broad comparisons of the many parameter learning methods
in existence. In Sec. 6.2, we discuss parallel optimization with heterogeneity in both the problems and the
computing systems.

We then propose two projects which unify all three topics in this thesis. In Sec. 6.3, we discuss unifying our
methods under a common system. Unifying our methods will involve joint analyses of parameter learning,
structure learning, and regression, and it has the potential to permit more adaptive learning methods which
can better take advantage of data, computation, and parallelism. In Sec. 6.4, we discuss applying this
system to the task of machine reading. Such a large real-world problem presents an ideal opportunity for
applying our methods, as well as many challenges which inspire new directions for research.

6.1 Unified Analyses of Parameter Learning

In Sec. 2.1.1, we discussed several categories of methods for learning the parameters of probabilistic
graphical models. Different authors have given evidence for different methods outperforming others in
different settings. Very few empirical or theoretical works have done broad comparisons across either
methods or problem settings. Greater efforts both at broad empirical comparisons and at unified analyses
would provide valuable guidance for current applications and for future development of improved learning
methods.

We find inspiration for this goal in the field of optimization, in which a variety of efforts have coalesced
into an increasingly well-defined toolkit. This optimization toolkit includes a set of often-exchangeable
parts (batch vs. stochastic gradient, coordinate vs. full-gradient descent, first- vs. second-order methods,
etc.) which are known to work well in certain situations (e.g., batch with few training examples and
stochastic with many training examples).

Such a toolkit is in very early stages in the field of parameter learning. Some parts which we envision in

93

a toolkit are:

Batch vs. stochastic: Objectives and gradients may be computed using batch or stochastic estimates. A
number of works have compared these two methods empirically (e.g., Vishwanathan et al. [2006]),
and much analysis from the optimization literature applies to our parameter learning problem.

Optimization vs. matching: Optimization-based learning includes maximum likelihood estimation and
related methods which pose learning objectives, such as pseudolikelihood and composite likelihood.
Matching-based learning refers to methods such as the method of moments and the canonical param-
eterization (Sec. 2.6) which do not pose optimization objectives but instead match terms between the
model and empirical distributions (moments for the method of moments, and local conditional dis-
tributions for the canonical parameterization). Very little work has compared these two categories
of learning methods, though some works have discussed combinations [Cam, 1986].

Optimization objectives: Among optimization-based learning, a variety of objectives have been pro-
posed, including those which we discuss (likelihood, pseudolikelihood, and composite likelihood)
and others such as the objectives used by contrastive divergence [Hinton, 2002], piecewise likeli-
hood [Sutton and McCallum, 2005], score matching [Hyvärinen, 2005] and ratio matching [Hyvärinen,
2007]. Theoretical and empirical comparisons include Liang and Jordan [2008], Bradley and
Guestrin [2012], and Marlin and de Freitas, which examine various subsets of these objectives.

Exact vs. approximate inference: The optimization-based approaches all use some type of inference,
either on the full model or estimator components. Though approximate inference has been shown
to be empirically successful during learning, it is still unclear how various approximate inference
methods interact with and relate to learning methods. One notable exception is the analysis of learn-
ing with variational inference by Wainwright [2006], but many other settings lack such theoretical
results.

Currently, certain methods tend to be preferred in certain areas, possibly because of tradition within the
literature. Broad comparisons of methods might help to break down such boundaries. For example, deep
learning researchers often use stochastic gradient for optimization, but recent work suggested that some
batch methods may be much faster [Le et al., 2011].

Finally, we mention two major issues which should impact how this learning toolkit is constructed: test-
time inference and semi-supervision. Some research has indicated that learning methods should match
the type of inference used at test-time [Wainwright, 2006]. In Wainwright [2006], the same type of
approximate inference is used for both training and testing, but for many learning methods (e.g., the
method of moments), it is less clear how to choose a matching inference method. It is also unclear which
ideas from supervised parameter learning translate to the semi-supervised setting; we mention issues with
composite likelihood in Sec. 2.8.3. Including test-time inference and semi-supervision in analysis may
significantly affect the relative performance of methods in a parameter learning toolkit.

6.2 Parallel Optimization in Heterogeneous Settings

We discussed parallel regression for the multicore setting in Ch. 4, as well as proposed extensions to the
distributed setting (Sec. 4.7.4). Even more interesting and important will be extensions to more complex
learning problems and computing environments. Many learning problems, such as CRF parameter learn-
ing, have complex structure which can make parallelization more difficult to design. Similarly, large-scale

94

parallel computing systems tend to have complex, hierarchical structure, with parallelism at multiple lev-
els: distributed, multi-core (CPU) and many-core (Graphics Processing Units). Designing learning meth-
ods for such heterogeneous problems and systems will require adaptively dividing learning into many
levels of granularity.

Computing systems for handling granular parallel computation are already being developed. For exam-
ple, MapReduce [Dean and Ghemawat, 2004] handles data-parallel computation, while the more recent
GraphLab [Low et al., 2010] handles more complex graph-structured computation.

Our primary interest, however, is not in system design; rather, it is in adapting and designing the learning
methods themselves with parallelism in mind. As we argued throughout this thesis, the choice of learning
method affects the potential for parallelism. For parameter learning, composite likelihood estimators may
be chosen to permit highly data-parallel computation; for regression, coordinate descent permits data-
parallel computation for some problems but not others. Likewise, the method for parallelization affects the
efficacy of the learning method. For some composite likelihood estimators, distributed computation may
limit communication and force us into the disjoint optimization regime (with higher sample complexity);
for Shotgun, too much data-parallel computation (too many parallel updates) may slow convergence.
Thus, we would like to design learning methods with parallelism in mind, including sample complexity
(and accuracy) in our analysis.

It is not clear which method for parallelizing learning is ideal for each type of parallel computation. For
example, in distributed computation, it is easy to parallelize by splitting training examples across compute
nodes [Zhang et al., 2012, Zinkevich et al., 2010], but splitting features may be better in some settings,
even if it requires more communication [Boyd et al., 2011a]. Initially, we hope to address this question in
the context of distributed regression, in which we may parallelize over training examples, features, or both,
using distributed and multicore parallelism. Ultimately, we would like to address optimizing parallelism
for learning graphical models, whose often heterogeneous and hierarchical structure may require much
more flexible definitions of granularity for parallelism.

6.3 Unifying Our Methods

Our works on CRF parameter and structure learning and parallel regression have been largely separate,
yet these problems are closely linked. We discuss plans for a distributed system combining all three
parts (Fig. 6.1). Each part of learning can be used for solving subproblems in other parts of learning.
Linking these methods into a single pipeline for learning CRFs will produce a flexible, highly scalable
system.

In addition to practical system building, this research effort will give rise to a plethora of questions about
interactions between the various components. A joint learning system will have many more knobs for
optimizing trade-offs and adapting to new models and data, and each link in the system will require new
analyses. We detail major challenges and questions as we outline our planned system in the rest of this
section.

95

Parameter	 Learning	

Structured	 MCLE	

Structure	 Learning	

L1	 Structure	 Learning	

Learning	 Trees	

Parallel	 Regression	

Shotgun	 (mul;core)	

Distributed	

Structured	 L1	 regression	

Choosing	
es;mator	 structure	

Solving	 local	
subproblems	

Distributed	
op;miza;on	

Compu;ng	
edge	 weights	

Figure 6.1: Planned CRF learning system. This figure shows how our current and future work on CRF
parameter and structure learning and parallel regression will be tied together in our planned CRF learning
system. Each link in the system presents challenges in analyzing how to integrate parts of learning, as
well as opportunities for sharing innovations between those parts.

6.3.1 Parameter Learning

We plan to learn parameters using structured maximum composite likelihood estimation (MCLE) (Ch. 2).
We will distribute computation across compute nodes by solving subsets of the estimator components on
each node, with limited communication between components.

The primary challenge will be automatically optimizing our choice of composite likelihood estimator
structure and its implementation in a distributed system. This optimization will be w.r.t. several objec-
tives (or constraints): minimize sample complexity, minimize computational complexity (of inference in
each estimator component), maximize potential for parallelism (across distributed compute nodes), and
minimize the amount of communication (between compute nodes). Refer back to Ch. 2 and particularly
the future work in Sec. 2.8 for discussions on how estimator structure and distributed optimization with
limited communication affect these objectives.

This design will let us take advantage of our work on structure learning and parallel regression. Choosing
structures for estimator components may be able to take advantage of our work on learning tree CRFs; one
interesting question is how traditional structure learning differs choosing a good estimator structure. On
each compute node, optimizing each estimator component is essentially a regression problem, which can
use our work on Shotgun for multicore regression. Across compute nodes, we would like to use limited
communication to improve sample complexity, which may be closely related to our work on distributed
regression.

6.3.2 Structure Learning

We plan to learn two types of structures: sparse structures (for general models) and trees (for tractable
inference). For general sparse structures, we will generalize L1-regularized pseudolikelihood to L1-
regularized structured composite likelihood (mentioned in Sec. 3.6.3). For trees, we plan to improve
upon our current algorithmic approach discussed in Ch. 3.

96

A primary challenge in learning sparse structures will be developing a method which adaptively chooses
a structured estimator which can outperform unstructured pseudolikelihood estimators. One possibility is
to use an incremental approach which iteratively constructs more complex estimators as edges are chosen
for the model. Learning trees presents many challenges, outlined in Sec. 3.6.

Our structure learning methods will benefit from our work on parameter learning and parallel regression.
Our choice of composite likelihood estimators for L1-based structure learning will be guided by our
discoveries about composite likelihood for the domain of parameter learning. Our tree-learning algorithms
will likely use regression as a basic component for computing edge weights, so Shotgun will allow
immediate speedups from multicore parallelism.

6.3.3 Parallel Regression

We plan to integrate our current work on Shotgun for multicore regression (Ch. 4), which will be imme-
diately applicable to both parameter and structure learning. Our planned work on distributed regression
(Sec. 4.7.4) will be closely related to our plans for distributed optimization of structure composite likeli-
hood.

One novel challenge for multicore regression will be taking advantage of the fact that we will be solv-
ing many related regression problems (e.g., regressing variables on neighbors within the same region
of a CRF). The primary challenge for distributed parameter learning will be limiting communication,
which may take two forms. First, we may limit the number of messages each compute node may pass
to other nodes; ideally, our analysis will prove that a small number of communications can achieve sam-
ple complexity close to joint optimization while allowing parallel speedups close to disjoint optimization
(mentioned in Sec. 2.8.1). Second, we may communicate sparse data (e.g., sparse parameter vectors), as
discussed in Sec. 4.7.4.

6.4 Machine Reading

We discuss plans for applying our unified CRF learning system to machine reading. Our goals for machine
reading center around building a system which reads natural language and improves its performance and
understanding over time. Our ideas are largely inspired by the Never-Ending Language Learner (NELL),
developed by Carlson et al. [2010]. NELL, described more in Sec. 6.4.1, is a system designed to learn
forever with minimal human intervention, iteratively constructing a knowledge base from reading online
text and improving its reading using its knowledge base.

Our goals (Sec. 6.4.2) center around creating a system like NELL, but phrased as a single probabilistic
model such as a CRF. Related ideas for machine reading using probabilistic models include the systems
proposed by Wick et al. [2010], who presented probabilistic databases phrased as factor graphs, and by
Poon and Domingos [2010], who discussed databases phrased as Markov logic networks [Richardson and
Domingos, 2006].

97

6.4.1 Never-Ending Language Learner (NELL)

NELL is a system for extracting a knowledge base from web pages, designed to iteratively expand its set of
beliefs with minimal human intervention. NELL is composed of several components which are designed
to extract knowledge from text using orthogonal methods. In each iteration, components independently
extract new knowledge; the results from all components are aggregated; and each component uses the
aggregated knowledge in the next iteration. NELL, as described in Carlson et al. [2010], has four such
components for finding instances of categories and binary relations:

Coupled Pattern Learner: Uses contextual patterns (“mayor of X”)

Coupled Set Expander for Any Language: Uses lists and tables on web pages

Coupled Morphological Classifier: Uses text features such as words, capitalization, and parts of speech.

Rule Learner: Uses first-order relational learning, represented as probabilistic Horn clauses.

6.4.2 Our Proposals

A system like NELL represents both an important application which can benefit from our CRF parameter
learning methods, and a set of challenges for our methods which will inspire further research. Initially,
we plan to phrase components from NELL and other machine reading systems as CRFs. We then plan to
link these various components together into a single reading system.

Each of the problems solved by the components of NELL could be phrased as a CRF. To illustrate, we
discuss our initial work on the category prediction task for the Coupled Pattern Learner (CPL) compo-
nent.

Phrased in our notation for CRFs, one example for CPL corresponds to one noun phrase. CPL’s input
variables X are counts of occurrences of the noun phrase in each contextual pattern, and each output
variable Yi is a binary indicator of whether the noun phrase belongs to a particular category. Currently,
NELL does not solve this problem with a traditional probabilistic model. Carlson [2010] tested supervised
logistic regression, as well as a semi-supervised coupled version of logistic regression, and those results
indicated that more principled probabilistic models which account for structure inY can give better results.
We therefore expect our CRF learning methods to give further improvements.

We also plan to test our structure learning methods on NELL. For our tree CRF learning methods, we
would test projecting the CPL model structure onto a tree structure, thus trading off efficiency and accu-
racy. For methods which learn general structures, we would be able to learn new dependencies between
categories.

Applying CRFs to NELL subproblems poses several major challenges. We would need to develop exten-
sions of our methods to the semi-supervised setting and to more natural graph structures, as discussed in
Sec. 2.8 and Sec. 3.6. The scale of NELL and need for never-ending learning might require more research
into prioritizing parts of learning; the decomposability of our methods will likely prove useful in allowing
us to focus learning on particular parts of the model. Wick et al. [2010] discuss similar ideas for focused
learning.

Linking multiple machine reading systems into a single system will likely require a hierarchical CRF and
significant work to calibrate the different subsystems. However, a joint probabilistic model may improve

98

performance over systems such as NELL by modeling correlations between the subsystems’ beliefs or
predictions.

We believe that the principled approach of probabilistic graphical models and the power and flexibility
of our learning methods will let us make several important contributions to the field of machine reading.
First, our methods should improve performance, both in accuracy and scalability. A probabilistic graphical
model-based approach should produce better estimates of probabilities when extracting knowledge from
text, and our learning methods should make such an approach feasible on even larger knowledge bases and
data streams. Second, the ability to compute meaningful probabilities should be very helpful for active
learning, which will be key in a large, growing system meant to improve with limited human supervision.
Finally, the decompositions in our learning methods should fit well with the focused, ongoing learning
approaches which work well for machine reading, as in the systems designed by Carlson et al. [2010] and
Wick et al. [2010]. For example, focusing learning could take the form of devoting extra computation to
optimizing certain components of parameter estimators. Our methods should also be adaptable to ongoing
learning, in which model size may increase with new knowledge or data, for our estimators would only
need to be updated locally in the modified regions of the model.

99

Appendix A

CRF Parameter Learning

A.1 Composite Likelihood: Proofs from Ch. 2

A.1.1 CRF Losses and Derivatives

We provide a list of losses and derivatives for general log-linear CRFs.

General log-linear CRF model:

Pθ(Y |X) =
1

Z(X; θ)
exp

(
θTφ(Y,X)

)
(A.1)

=
1

Z(X; θ)
exp

∑
j

θTj φj(YCj , XDj)

 ,

where θ ∈ R is a length-r vector of parameters and φ(Y,X) ∈ R+ is a length-r non-negative feature
vector. When discussing the factors making up the model, we express factor j with domain (YCj , XDj) in
terms of its corresponding parameters θj and features φj .

Log loss for model Pθ w.r.t. distribution Pθ∗ :

`L(θ) = EP (X)

[
EPθ∗ (Y |X) [− logPθ(Y |X)]

]
(A.2)

= EP (X)

[
EPθ∗ (Y |X)

[
−θTφ(Y,X)

]
+ logZ(X; θ)

]
.

Gradient of log loss

∇`L(θ) = EP (X)

[
−EPθ∗ (Y |X) [φ(Y,X)] + EPθ(Y ′|X)

[
φ(Y ′, X)

]]
. (A.3)

Hessian of log loss:

∇2`L(θ) = EP (X)

[
EPθ(Y ′|X)

[
φ(Y ′, X)⊗

]
−
(
EPθ(Y ′|X)

[
φ(Y ′, X)

])⊗] (A.4)

= EP (X)

[
VarPθ(Y ′|X)

[
φ(Y ′, X)

]]
(A.5)

100

Third derivative of log loss:

∂

∂θi
∇2`L(θ) (A.6)

= EP (X)

[
E
[
φiφ
⊗]+ 2E [φi]E [φ]⊗ −E [φi]E

[
φ⊗
]
−E [φ]E [φiφ]T −E [φiφ]E [φ]T

]
,

where all unspecified expectations are w.r.t. Pθ(Y ′|X) and φ = φ(Y ′, X).

Composite likelihood loss for model Pθ w.r.t. distribution Pθ∗ :

`CL(θ) = EP (X)

[
EPθ∗ (Y |X)

[
−
∑
i

logPθ(YAi |Y\Ai , X)

]]
(A.7)

= EP (X)

EPθ∗ (Y |X)

∑
i

−θTAiφAi(Y,X) + log
∑
y′Ai

θTAiφAi(y
′
Ai , Y\Ai , X)

 .

Above, the likelihood components are specified by subsets YAi ⊆ Y . The parameter and feature subvec-
tors associated with component i are specified as θAi and φAi ; here, “associated with” means that at least
one Yj ∈ YAi is an argument of the function φk for each element k of φAi .

Gradient of composite likelihood loss:

∇`CL(θ) = EP (X)

[
EPθ∗ (Y |X)

[∑
i

−φAi(Y,X) + EPθ(Y ′Ai
|Y\Ai ,X)

[
φAi(Y

′
Ai , Y\Ai , X)

]]]
. (A.8)

Above, we abuse notation in the vector summation: each element in the summation over i is a subvector
of the full length-r gradient; these subvectors should be treated as length-r vectors (with zeros in the extra
elements) in the summation.

Hessian of composite likelihood loss:

∇2`CL(θ) (A.9)

= EP (X)Pθ∗ (Y |X)

[∑
i

EPθ(Y ′Ai
|Y\Ai ,X)

[
φYAi (Y

′
Ai , Y\Ai , X)⊗

]
−
(
EPθ(Y ′Ai

|Y\Ai ,X)

[
φYAi (Y

′
Ai , Y\Ai , X)

])⊗]

= EP (X)Pθ∗ (Y |X)

[∑
i

VarPθ(Y ′Ai
|Y\Ai ,X)

[
φYAi (Y

′
Ai , Y\Ai , X)

]]
.

In the matrix summation above, we again abuse notation: each element in the sum over i is added to a
submatrix of the full r× r Hessian. Each of these elements is the Hessian for a likelihood component; we
denote the Hessian of the ith component as∇2[`CL(θ)]Ai .

Third derivative of composite likelihood loss:

∂

∂θt
∇2`CL(θ) (A.10)

= EP (X)Pθ∗ (Y |X)

[∑
i : θt∈θAi

E
[
φtφ
⊗
Ai

]
+ 2E [φt]E [φAi]

⊗ −E [φt]E
[
φ⊗Ai

]

−E [φAi]E [φtφAi]
T −E [φtφAi]E [φAi]

T

]
,

101

where θt ∈ θAi indicates whether θt is an element of the parameter subvector θAi . All unspecified expecta-
tions are w.r.t. Pθ(Y ′Ai |Y\Ai , X), and the feature function arguments are hidden: φAi = φAi(Y

′
Ai
, Y\Ai , X)

and φt = φt(Y
′
Ai
, Y\Ai , X).

A.1.2 Parameter Estimation with MLE

We prove finite sample bounds for regression problems using log-linear models P (Y |X), as defined in
Eq. (A.1). This analysis applies both to learning CRF parameters via MLE and to learning parameters
for each composite likelihood component (when using disjoint optimization). Our analysis in this section
extends the analysis of Ravikumar et al. (2010) for Ising MRFs to the more general setting of log-linear
CRFs. Also, while they were concerned with L1-regularized regression in the high-dimensional setting
(with the number of covariates increasing with the training set size), we limit our discussion to L1- and
L2-regularized regression with a fixed number of covariates.

The log loss and its derivatives are defined in Eq. (A.2), Eq. (A.3), Eq. (A.4), and Eq. (A.6). We train our
model by minimizing the regularized log loss over n training samples, as in Eq. (2.2).

All of the results in this subsection are presented in terms of the parameters θ and corresponding features
φ, each of which are assumed to be length-r vectors. If the feature space is overcomplete, then the constant
Cmin, the minimum eigenvalue of the Hessian of the log loss, will be zero, violating our assumption that
Cmin > 0. However, in all of these results, θ and φ (and quantities defined in terms of these vectors)
may be replaced with UT θ and UTφ, where U is a r × d matrix whose columns are eigenvectors of the
Hessian corresponding to the non-zero eigenvalues. This transformation using U projects the parameters
and features onto a minimal set of vectors spanning the feature space.

The following lemma (similar to Lemma 2 of Ravikumar et al. (2010)) lets us bound the max norm of the
gradient of the empirical log loss at θ∗ with high probability.

Lemma A.1.1. Given n samples, a bound φmax on the magnitude of each of r features, and a constant
δ > 0, we have

P
[
‖∇ˆ̀

L(θ∗)‖∞ > δ
]
≤ 2r exp

(
− δ2n

2φ2
max

)
. (A.11)

Proof of Lemma A.1.1: Consider one element j of the gradient at θ∗: [∇ˆ̀
L(θ∗)]j , as in Eq. (A.3). This

element is a random variable (random w.r.t. the sample) with mean 0. The variable also has bounded
range [−φmax, φmax]. We may therefore apply the Azuma-Hoeffding inequality Hoeffding [1963], which
states that

P
[∣∣∣[∇ˆ̀

L(θ∗)]j

∣∣∣ > δ
]
≤ 2 exp

(
− δ2n

2φ2max

)
. (A.12)

Applying a union bound over all r elements of the gradient gives the lemma’s result. �

We now give a lemma which shows that the minimum eigenvalue of the Hessian of the empirical log loss
ˆ̀
L (w.r.t. n samples from the target distribution) is close to that for the actual log loss `L (w.r.t. the target

distribution itself).

Lemma A.1.2. Assume Λmin
(
∇2`L(θ∗)

)
≥ Cmin > 0 and φmax = maxj,y,x φj(y, x). With n training

samples, the minimum eigenvalue of the Hessian of the empirical log loss is not much smaller than Cmin

102

with high probability:

P
[
Λmin

(
∇2 ˆ̀

L(θ∗)
)
≤ Cmin − ε

]
≤ 2r2 exp

(
− nε2

8r2φ4
max

)
. (A.13)

Proof of Lemma A.1.2: Our proof is similar to that of Lemma 5 from Ravikumar et al. (2010). Define
shorthand for the Hessian of the log loss w.r.t. the target distribution: Q .

= ∇2`L(θ∗) and for the Hessian
w.r.t. the empirical distribution: Qn .

= ∇2 ˆ̀
L(θ∗). Using the Courant-Fischer variational representation

Horn and Johnson [1990], we can re-express the minimum eigenvalue of the Hessian:

Λmin(Q) = min
‖v‖2=1

vTQv (A.14)

= min
‖v‖2=1

[
vTQnv + vT (Q−Qn)v

]
(A.15)

≤ vTminQnvmin + vTmin(Q−Qn)vmin, (A.16)

(A.17)

where vmin : ‖vmin‖2 = 1 is an eigenvector corresponding to the minimum eigenvalue ofQn. Rearrang-
ing,

Λmin(Qn) ≥ Λmin(Q)− vTmin(Q−Qn)vmin (A.18)

≥ Λmin(Q)− Λmax(Q−Qn) (A.19)

≥ Λmin(Q)−

(
r∑
s=1

r∑
t=1

(Qst −Qnst)2

)1/2

, (A.20)

where the last inequality upper-bounded the spectral norm with the Frobenius norm. Recall that

∇2 ˆ̀
L(θ∗) = 1

n

n∑
i=1

EPθ∗ (Y ′|x(i))

[
φ(Y ′, x(i))⊗

]
−
(
EPθ∗ (Y ′|x(i))

[
φ(Y ′, x(i))

])⊗
(A.21)

We upper-bound the Frobenius norm term by noting that each element (Qst − Qnst) may be written as
an expectation over our n samples of zero-mean, bounded-range values. Abbreviating φ = φ(Y,X) and
φ(i) = φ(Y, x(i)), we can write:

Qst −Qnst = EP (X)

[
EPθ∗ (Y |X) [φsφt]−EPθ∗ (Y |X) [φs]EPθ∗ (Y |X) [φt]

]
(A.22)

− 1
n

n∑
i=1

[
EPθ∗ (Y |x(i))

[
φ(i)
s φ

(i)
t

]
−EPθ∗ (Y |x(i))

[
φ(i)
s

]
EPθ∗ (Y |x(i))

[
φ

(i)
t

]]
(A.23)

= 1
n

n∑
i=1

[
EP (X)

[
EPθ∗ (Y |X) [φsφt]−EPθ∗ (Y |X) [φs]EPθ∗ (Y |X) [φt]

]
(A.24)

−
[
EPθ∗ (Y |x(i))

[
φ(i)
s φ

(i)
t

]
−EPθ∗ (Y |x(i))

[
φ(i)
s

]
EPθ∗ (Y |x(i))

[
φ

(i)
t

]]]
.(A.25)

Each of these n values has magnitude at most 2φ2
max. The Azuma-Hoeffding inequality Hoeffding [1963]

tells us that, for any s, t,

P
[
(Qst −Qnst)2 ≥ ε2

]
= P [|Qst −Qnst)| ≥ ε] ≤ 2 exp

(
− nε2

8φ4
max

)
. (A.26)

103

A union bound over all elements s, t shows:

P

[
r∑
s=1

r∑
t=1

(Qst −Qnst)2 ≥ r2ε2

]
≤ 2r2 exp

(
− nε2

8φ4
max

)
(A.27)

P

(r∑
s=1

r∑
t=1

(Qst −Qnst)2

)1/2

≥ ε

 ≤ 2r2 exp

(
− nε2

8r2φ4
max

)
. (A.28)

Using the above inequality with Eq. (A.20), we get:

P [Λmin(Qn) ≤ Cmin − ε] ≤ 2r2 exp

(
− nε2

8r2φ4
max

)
. � (A.29)

We next prove a lemma which lower-bounds the log loss (w.r.t. our training samples) in terms of the
parameter estimation error (the distance between our estimated parameters θ̂ and the target parameters
θ∗). The analysis resembles part of Lemma 3 from Ravikumar et al. (2010).

Lemma A.1.3. Let ˆ̀
L(θ) be the log loss w.r.t. n training samples. Assume bounds Λmin

(
∇2`L(θ∗)

)
≥

Cmin > 0 and φmax = maxj,y,x φj(y, x). Let δ > 0. Let B = ‖θ − θ∗‖1. Then

ˆ̀
L(θ)− ˆ̀

L(θ∗) ≥ −δB + r−1

4 CminB
2 − 1

2φ
3
maxB

3 (A.30)

with probability at least

1− 2r exp
(
− δ2n

2φ2max

)
− 2r2 exp

(
− nC2

min
25r2φ4max

)
. (A.31)

Proof of Lemma A.1.3: Let u = θ − θ∗ and ‖u‖1 = B. Use a Taylor expansion of ˆ̀
L around θ∗:

ˆ̀
L(θ) = ˆ̀

L(θ∗) +
(
∇ˆ̀

L(θ∗)
)T

u+ 1
2u

T
(
∇2 ˆ̀

L(θ∗)
)
u+ 1

6

∑
i

uiu
T
(

∂
∂θ̄i
∇2 ˆ̀

L(θ̄)
∣∣
θ̄=θ∗+αu

)
u,(A.32)

where α ∈ [0, 1]. We now lower-bound the first-, second-, and third-order terms.

First-order term in Eq. (A.32): (
∇ˆ̀

L(θ∗)
)T

u ≥ −
∣∣∣∣(∇ˆ̀

L(θ∗)
)T

u

∣∣∣∣ (A.33)

≥ −‖∇ˆ̀
L(θ∗)‖∞‖u‖1 (A.34)

= −‖∇ˆ̀
L(θ∗)‖∞B (A.35)

≥ −δB, (A.36)

where the second inequality uses Holder’s inequality, and where the last inequality uses Lemma A.1.1 and
holds with probability at least 1− 2r exp(− δ2n

2φ2max
).

Second-order term in Eq. (A.32):

1
2u

T
(
∇2 ˆ̀

L(θ∗)
)
u ≥ 1

2Λmin

(
∇2 ˆ̀

L(θ∗)
)
‖u‖22 (A.37)

≥ r−1

2 Λmin

(
∇2 ˆ̀

L(θ∗)
)
‖u‖21 (A.38)

= r−1

2 Λmin

(
∇2 ˆ̀

L(θ∗)
)
B2, (A.39)

104

where we used the definition of Λmin(∇2 ˆ̀
L(θ∗)), the minimum eigenvalue of the Hessian at θ∗. Now use

Lemma A.1.2 with ε = Cmin
2 to show:

1
2u

T
(
∇2 ˆ̀

L(θ∗)
)
u ≥ r−1

4 CminB
2, (A.40)

which holds with probability at least 1− 2r2 exp
(
− nC2

min
25r2φ4max

)
.

Third-order term in Eq. (A.32):

1
6

∑
i

uiu
T
(

∂
∂θ̄i
∇2 ˆ̀

L(θ̄)
∣∣
θ̄=θ∗+αu

)
u (A.41)

= 1
6

∑
i

uiu
T
(
E
[
φiφ
⊗]+ 2E [φi]E [φ]⊗ −E [φi]E

[
φ⊗
]

(A.42)

−E [φ]E [φiφ]T −E [φiφ]E [φ]T
)
u,

where all expectations are w.r.t. Pθ∗+αu(Y ′|X) and φ = φ(Y ′, X). Continuing,

1
6

∑
i

uiu
T
(
E
[
φiφ
⊗]+ 2E [φi]E [φ]⊗ −E [φi]E

[
φ⊗
]

(A.43)

−E [φ]E [φiφ]T −E [φiφ]E [φ]T
)
u

= 1
6

∑
i

ui

(
E
[
φi(u

Tφ)2
]

+ 2E [φi]E
[
uTφ

]2 −E [φi]E
[
(uTφ)2

]
(A.44)

−2E
[
uTφ

]
E
[
φiu

Tφ
])

= 1
6

(
E
[
(uTφ)3

]
+ 2E

[
uTφ

]3 − 3E
[
uTφ

]
E
[
(uTφ)2

])
(A.45)

≥ 1
6

(
3E
[
uTφ

]3 − 3E
[
uTφ

]
E
[
(uTφ)2

])
(A.46)

= −1
2E
[
uTφ

] (
E
[
(uTφ)2

]
−E

[
uTφ

]2)
(A.47)

≥ −1
2

∣∣E [uTφ]∣∣ · ∣∣∣E [(uTφ)2
]
−E

[
uTφ

]2∣∣∣ (A.48)

≥ −1
2

∣∣E [uTφ]∣∣ ·E [(uTφ)2
]

(A.49)

≥ −1
2E
[
|uTφ|

]
·E
[
|uTφ|2

]
(A.50)

≥ −1
2‖u‖

3
1φ

3
max (A.51)

= −1
2B

3φ3
max. (A.52)

Two of our bounds in this proof had small probabilities of failure. Using a union bound, we get the
probability of at least one failing, finishing the proof. �

We now prove a lemma which bounds our parameter estimation error in terms of our training sample size;
it is similar to Lemma 3 from Ravikumar et al. (2010). Note that θ̂ is defined as the minimizer of Eq. (2.2)
with ˆ̀= ˆ̀

L.

Proof of Theorem 2.3.1: Define a convex function G : Rr → R by

G(u) = ˆ̀
L(θ∗ + u)− ˆ̀

L(θ∗) + λ (‖θ∗ + u‖p − ‖θ∗‖p) . (A.53)

105

By definition of θ̂, the function G is minimized at û = θ̂ − θ∗. Since G(0) = 0, we know G(û) ≤ 0.
Using the same argument as Ravikumar et al. (2010), ifG(u) > 0 for all u ∈ Rr with ‖u‖1 = B for some
B > 0, then we know that ‖û‖1 ≤ B.

Let u ∈ Rr with ‖u‖1 = B. Using Lemma A.1.3, we can lower-bound G:

G(u) ≥ −δB + r−1

4 CminB
2 − 1

2φ
3
maxB

3 (A.54)

+λ (‖θ∗ + u‖p − ‖θ∗‖p) ,

which holds with the probability given in Lemma A.1.3. We can lower-bound the regularization term (for
both L1 and L2 regularization):

λ (‖θ∗ + u‖p − ‖θ∗‖p) ≥ −λ‖u‖p (A.55)

(If p = 1) = −λ‖u‖1 = −λB. (A.56)

(If p = 2) = −λ‖u‖2 ≥ −λ‖u‖1 = −λB. (A.57)

Combine the above bound into Eq. (A.54):

G(u) ≥ −δB + r−1

4 CminB
2 − 1

2φ
3
maxB

3 − λB (A.58)

= B
[
−δ + r−1

4 CminB − 1
2φ

3
maxB

2 − λ
]
. (A.59)

Note that we need λ > 0, B > 0, δ > 0. Eq. (A.59) will be strictly greater than 0 if B > 0 and

λ < −δ + r−1

4 CminB − 1
2φ

3
maxB

2. (A.60)

Maximizing this bound w.r.t. B gives B = Cmin
4rφ3max

. However, we would like for B to shrink as n−1/2, the
asymptotic rate of convergence, so instead let

B =
Cmin

4rφ3
max

n−ξ/2, (A.61)

where ξ ∈ (0, 1). Plugging in this value for B gives

λ < −δ +
C2
min

24r2φ3
max

n−ξ/2 − C2
min

25r2φ3
max

n−ξ. (A.62)

We want to choose δ to be large but still keep λ > 0, so choose

λ = δ =
C2
min

26r2φ3
max

n−ξ/2, (A.63)

which makes Eq. (A.62) hold if n > 1. Now that we have chosen δ, we can simplify the probability of
failure from Lemma A.1.3:

2r exp
(
− δ2n

2φ2max

)
+ 2r2 exp

(
− nC2

min
25r2φ4max

)
(A.64)

= 2r exp
(
− C4

min
213r4φ8max

n1−ξ
)

+ 2r2 exp
(
− C2

min
25r2φ4max

n
)

(A.65)

≤ 2r exp
(
− C4

min
213r4φ8max

n1−ξ
)

+ 2r2 exp
(
− C4

min
213r4φ8max

n1−ξ
)

(A.66)

= 2r(r + 1) exp
(
− C4

min
213r4φ8max

n1−ξ
)
. (A.67)

106

Above, we upper-bounded the spectral norm with the Frobenius norm to show thatCmin ≤ Λmax

(
∇2 ˆ̀

L(θ∗)
)
≤

φ2
maxr. �

We can convert the previous result into a sample complexity bound for achieving a given parameter esti-
mation error.

Proof of Corollary 2.3.2: If we wish to have a probability of failure of at most δ when we have n samples,
we may choose ξ accordingly:

2r(r + 1) exp
(
− C4

min
213r4φ8max

n1−ξ
)
≤ δ (A.68)

log(2r(r + 1))− C4
min

213r4φ8max
n1−ξ ≤ log δ (A.69)

C4
min

213r4φ8max
n1−ξ ≥ log 2r(r+1)

δ (A.70)

n1−ξ ≥ 213r4φ8max
C4
min

log 2r(r+1)
δ (A.71)

1− ξ ≥ 1
logn

(
log 213r4φ8max

C4
min

+ log log 2r(r+1)
δ

)
(A.72)

ξ ≤ 1− 1
logn

(
log 213r4φ8max

C4
min

+ log log 2r(r+1)
δ

)
. (A.73)

We will set ξ equal to this upper bound in the next part. Likewise, if we wish to have parameter estimation
error at most ε, then we need:

Cmin
4rφ3max

n−ξ/2 ≤ ε (A.74)

log Cmin
4rφ3max

− ξ
2 log n ≤ log ε (A.75)
ξ
2 log n ≥ log Cmin

4rφ3max
− log ε (A.76)

1
2

(
1− 1

logn

(
log 213r4φ8max

C4
min

+ log log 2r(r+1)
δ

))
log n ≥ log Cmin

4rφ3max
− log ε (A.77)

log n−
(

log 213r4φ8max
C4
min

+ log log 2r(r+1)
δ

)
≥ 2 log Cmin

4rφ3maxε
. (A.78)

log n ≥ 2 log Cmin
4rφ3maxε

+ log 213r4φ8max
C4
min

+ log log 2r(r+1)
δ (A.79)

= log
C2
min

24r2φ6max
+ log 213r4φ8max

C4
min

+ 2 log 1
ε + log log 2r(r+1)

δ (A.80)

= log 29r2φ2max
C2
min

+ 2 log 1
ε + log log 2r(r+1)

δ (A.81)

n ≥ 29r2φ2max
C2
min

1
ε2

log 2r(r+1)
δ . � (A.82)

A.1.3 Parameter Estimation with MCLE

We train our model by minimizing the regularized composite likelihood loss over n training samples:

min
θ

ˆ̀
CL(θ) + λ‖θ‖p, (A.83)

where ˆ̀
CL(θ) is the composite likelihood loss w.r.t. the n training samples, λ ≥ 0 is a regularization

parameter, and p ∈ {1, 2} specifies theL1 orL2 norm. Note that ˆ̀
CL(θ) is Eq. (A.7) with P (X)Pθ∗(Y |X)

replaced with the empirical distribution.

107

Lemma A.1.4. Given n samples, a bound φmax on the magnitude of each of r features, a bound Mmax

on the number of likelihood components in which any feature participates, and a constant δ > 0, we have

P [‖∇`CL(θ∗)‖∞ > δ] ≤ 2r exp

(
− δ2n

2M2
maxφ

2
max

)
. (A.84)

Proof of Lemma A.1.4: Consider one element j of the expected gradient at θ∗: EP (X)Pθ∗ (Y |X) [[∇`CL(θ∗)]j].
This element is a random variable (random w.r.t. the sample) with mean 0. The variable also has bounded
range [−Mjφmax,Mjφmax], where Mj is the number of likelihood components in which θj participates.
We may therefore apply the Azuma-Hoeffding inequality Hoeffding [1963], which states that

P [|[∇`CL(θ∗)]j | > δ] ≤ 2 exp

(
− δ2n

2M2
j φ

2
max

)
. (A.85)

Applying a union bound over all r elements of the gradient and using Mmax = maxjMj gives the
lemma’s result. �

Lemma A.1.5. Define ρt =
∑

i : θt∈θAi
Λmin(∇2[`CL(θ∗)]Ai), i.e., the sum of minimum eigenvalues for

all likelihood components in which parameter θt participates (w.r.t. the target distribution). Define ρ̂t
analogously w.r.t. ˆ̀

CL (i.e., w.r.t. the empirical distribution). Assume φmax = maxj,y,x φj(y, x). Let A
denote the set of likelihood components. With n training samples, the empirical quantities ρ̂t are not much
smaller than ρt with high probability:

P
[
∃t : ρ̂t ≤ ρt

2

]
≤ 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
. (A.86)

Proof of Lemma A.1.5: Let Ci be the minimum eigenvalue of the Hessian of likelihood component Ai
w.r.t the target distribution. The Hessian of each likelihood component may be analyzed using Lemma A.1.2,
with ε = Ci

2 , giving the result:

P
[
Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)
≤ Ci

2

]
≤ 2r2

Ai exp

(
− nC2

i

25r2
Ai
φ4
max

)
, (A.87)

where rAi denotes the length of the parameter vector corresponding to likelihood component Ai. A union
bound over all |A| likelihood components in the min operation gives:

P
[
∃i : Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)
≤ Ci

2

]
≤ 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
. (A.88)

I.e., all components’ minimum eigenvalues (w.r.t. the training data) are within a factor of 1
2 of their

true eigenvalues (w.r.t. the target distribution) with high probability, which implies that sums of sets of
eigenvalues are likewise estimated within a factor of 1

2 , giving the lemma’s result. �

Lemma A.1.6. Let ˆ̀
CL(θ) be the composite likelihood loss w.r.t. n training samples. Assume bounds

mini Λmin
(
∇2[`CL(θ∗)]Ai

)
≥ Cmin > 0 and φmax = maxj,y,x φj(y, x). Let ρmin = mint ρt. Let

Mmax,Mmin be the maximum and minimum numbers of components any feature participates in, respec-
tively. Let δ > 0. Let B = ‖θ − θ∗‖1. Then

ˆ̀
CL(θ)− ˆ̀

CL(θ∗) ≥ −δB + r−1

4 ρminB
2 − 1

2Mmaxφ
3
maxB

3 (A.89)

with probability at least

1− 2r exp
(
− δ2n

2M2
maxφ

2
max

)
− 2|A|r2 exp

(
− nC2

min
25r2φ4max

)
. (A.90)

108

Proof of Lemma A.1.6: We abbreviate this proof where it is similar to that of Lemma A.1.3.

Let u = θ − θ∗ and ‖u‖1 = B. Use a Taylor expansion of ˆ̀
CL around θ∗:

ˆ̀
CL(θ) = ˆ̀

CL(θ∗) +
(
∇ˆ̀

CL(θ∗)
)T

u+ 1
2u

T
(
∇2 ˆ̀

CL(θ∗)
)
u+ 1

6

∑
i

uiu
T
(

∂
∂θ̄i
∇2 ˆ̀

CL(θ̄)
∣∣
θ̄=θ∗+αu

)
u,(A.91)

where α ∈ [0, 1]. We now lower-bound the first-, second-, and third-order terms.

First-order term in Eq. (A.91): We can use Lemma A.1.4 to bound the first term with (∇ˆ̀
CL(θ∗))Tu ≥

−δB with probability at least 1− 2r exp(− δ2n
2M2

maxφ
2
max

).

Second-order term in Eq. (A.91): Let uAi denote the elements of u corresponding to the component of
the pseudolikelihood loss for YAi ; let rAi denote the length of uAi ; and let Mmin denote the minimum
number of likelihood components in which any parameter participates.

1
2u

T
(
∇2 ˆ̀

CL(θ∗)
)
u = 1

2

∑
i

uTAi

(
∇2[ˆ̀CL(θ∗)]Ai

)
uAi (A.92)

≥ 1
2

∑
i

Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)
‖uAi‖22 (A.93)

Continuing,

1
2u

T
(
∇2 ˆ̀

CL(θ∗)
)
u ≥ 1

2

∑
i

Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)
‖uAi‖22 (A.94)

= 1
2

∑
t

 ∑
i :ut∈uAi

Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)u2
t (A.95)

= 1
2

∑
t

ρ̂tu
2
t (A.96)

≥ 1
4

∑
t

ρtu
2
t (A.97)

≥ 1
4ρmin

∑
t

u2
t (A.98)

= 1
4ρmin‖u‖

2
2 (A.99)

≥ r−1

4 ρmin‖u‖21 (A.100)

= r−1

4 ρminB
2, (A.101)

where we used Lemma A.1.5 to lower-bound ρ̂t with ρt/2 with high probability.

Third-order term in Eq. (A.91):

1
6

∑
t

utu
T
(

∂
∂θ̄t
∇2 ˆ̀

CL(θ̄)
∣∣
θ̄=θ∗+αu

)
u (A.102)

= 1
6

∑
t

utu
T

(∑
i : θt∈θAi

E
[
φtφ
⊗
Ai

]
+ 2E [φt]E [φAi]

⊗ −E [φt]E
[
φ⊗Ai

]
(A.103)

−E [φAi]E [φtφAi]
T −E [φtφAi]E [φAi]

T

)
u, (A.104)

109

where all expectations are w.r.t. Pθ∗+αu(Y ′Ai |Y\Ai , X), and φAi = φAi(Y
′
Ai
, Y\Ai , X) and φt = φt(Y

′
Ai
, Y\Ai , X).

We can lower-bound and collapse the various terms on the right-hand side, just as in the proof of Theo-
rem 2.3.1:

1
6

∑
t

utu
T
(

∂
∂θ̄t
∇2 ˆ̀

CL(θ̄)
∣∣
θ̄=θ∗+αu

)
u (A.105)

= 1
6

∑
t

ut
∑

i : θt∈θAi

uTAi

(
E
[
φtφ
⊗
Ai

]
+ 2E [φt]E [φAi]

⊗ −E [φt]E
[
φ⊗Ai
]

(A.106)

−E [φAi]E [φtφAi]
T −E [φtφAi]E [φAi]

T

)
uAi (A.107)

= 1
6

∑
t

ut
∑

i : θt∈θAi

(
E
[
φt(u

T
AiφAi)

2
]

+ 2E [φt]E
[
uTAiφAi

]2 −E [φt]E
[
(uTAiφAi)

2
]

(A.108)

−2E
[
uTAiφAi

]
E
[
φtu

T
AiφAi

]T)
uAi (A.109)

= 1
6

∑
i

E
[
(uTAiφAi)

3
]

+ 2E
[
uTAiφAi

]
E
[
uTAiφAi

]2 − 3E
[
uTAiφAi

]
E
[
(uTAiφAi)

2
]
. (A.110)

Using Jensen’s inequality multiple times, we can continue:

1
6

∑
i

E
[
(uTAiφAi)

3
]

+ 2E
[
uTAiφAi

]
E
[
uTAiφAi

]2 − 3E
[
uTAiφAi

]
E
[
(uTAiφAi)

2
]

(A.111)

≥ 1
6

∑
i

3E
[
uTAiφAi

]3 − 3E
[
uTAiφAi

]
E
[
(uTAiφAi)

2
]

(A.112)

= 1
2

∑
i

E
[
uTAiφAi

]3 −E
[
uTAiφAi

]
E
[
(uTAiφAi)

2
]

(A.113)

= − 1
2

∑
i

∣∣E [uTAiφAi]∣∣ · (E [(uTAiφAi)2
]
−E

[
uTAiφAi

]2)
(A.114)

≥ − 1
2

∑
i

∣∣E [uTAiφAi]∣∣E [(uTAiφAi)2
]

(A.115)

≥ − 1
2

∑
i

E
[∣∣uTAiφAi∣∣3] . (A.116)

Applying Holder’s inequality, we can continue:

− 1
2

∑
i

E
[∣∣uTAiφAi∣∣3] ≥ − 1

2

∑
i

‖uAi‖31φ3
max ≥ − 1

2Mmax‖u‖31φ3
max = − 1

2MmaxB
3φ3
max. (A.117)

Two of our bounds in this proof had small probabilities of failure. Using a union bound, we get the
probability of at least one failing, finishing the proof. �

Proof of Theorem 2.3.3: As in the proof of Theorem 2.3.1, we define G : Rr → R by

G(u) = ˆ̀
CL(θ∗ + u)− ˆ̀

CL(θ∗) + λ (‖θ∗ + u‖p − ‖θ∗‖p) , (A.118)

with the difference that we now use the composite likelihood loss. As in Theorem 2.3.1, we wish to show
that G(u) > 0 for all u ∈ Rr with ‖u‖1 = B for some B > 0, which will imply that ‖û‖1 ≤ B.

Let u ∈ Rr with ‖u‖1 = B. Using Lemma A.1.6, we can lower-bound G:

G(u) ≥ −δB + r−1

4 ρminB
2 − 1

2Mmaxφ
3
maxB

3 (A.119)

+λ (‖θ∗ + u‖p − ‖θ∗‖p) ,

110

which holds with the probability given in Lemma A.1.6. As in the proof of Theorem 2.3.1, we can
lower-bound the regularization term (for both L1 and L2 regularization): λ (‖θ∗ + u‖p − ‖θ∗‖p) ≥ −λB.
Combining these bounds, we get:

G(u) ≥ −δB + r−1

4 ρminB
2 − 1

2MmaxB
3φ3

max − λB (A.120)

= B
[
−δ + r−1

4 ρminB − 1
2MmaxB

2φ3
max − λ

]
. (A.121)

Note that we need λ > 0, B > 0, δ > 0. Eq. (A.121) will be strictly greater than 0 if B > 0 and

λ < −δ + r−1

4 ρminB − 1
2MmaxB

2φ3
max. (A.122)

Maximizing this bound w.r.t. B gives B = ρmin
4rMmaxφ3max

. However, we would like for B to shrink as

n−1/2, the asymptotic rate of convergence, so instead let

B =
ρmin

4rMmaxφ3
max

n−ξ/2, (A.123)

where ξ ∈ (0, 1). Plugging in this value for B gives

λ < −δ +
ρ2
min

24r2Mmaxφ3
max

n−ξ/2 − ρ2
min

25r2Mmaxφ3
max

n−ξ. (A.124)

We want to choose δ to be large but still keep λ > 0, so choose

λ = δ =
ρ2
min

26r2Mmaxφ3
max

n−ξ/2, (A.125)

which makes Eq. (A.124) hold if n > 1. Now that we have chosen δ, we can simplify the probability of
failure from Lemma A.1.6:

2r exp
(
− δ2n

2M2
maxφ

2
max

)
+ 2|A|r2 exp

(
− nC2

min
25r2φ4max

)
(A.126)

= 2r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
+ 2|A|r2 exp

(
− nC2

min
25r2φ4max

)
(A.127)

≤ 2r exp
(
− C4

minn
1−ξ

213r4M4
maxφ

8
max

)
+ 2|A|r2 exp

(
− nC2

min
25r2φ4max

)
(A.128)

≤ 2r(|A|r + 1) exp
(
− C4

min
213r4M4

maxφ
8
max

n1−ξ
)
. (A.129)

The above bound is very loose in combining the two exponential terms; in particular, we would like ρmin
to remain in the bound. To derive a sufficient condition for this tighter combination, we first require that
the left-hand term in the probability of failure be meaningful, i.e., at most 1:

2r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
≤ 1 (A.130)

log(2r)− ρ4minn
1−ξ

213r4M4
maxφ

8
max

≤ 0 (A.131)

n1−ξ ≥ 213r4M4
maxφ

8
max

ρ4min
log(2r). (A.132)

111

To keep ρmin in the bound, we want to show that the left-hand exponential term in Eq. (A.127) dominates
the right-hand term. Thus, we must use Eq. (A.132) to show a sufficient condition for:

2r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
≥ 2|A|r2 exp

(
− nC2

min
25r2φ4max

)
. (A.133)

We may replace n with n1−ξ on the right-hand side. Since the left-hand term decreases more slowly in n
than the right-hand term, we may replace n with the value from Eq. (A.132):

1 ≥ 2|A|r2 exp
(
−28C2

minr
2M4

maxφ
4
max

ρ4
log(2r)

)
(A.134)

|A| ≤ 1
2r2

exp
(

28C2
minr

2M4
maxφ

4
max

ρ4
log(2r)

)
. (A.135)

Since ρmin is a sum of at most Mmax eigenvalues, and since any eigenvalue is at most φ2
maxr (as shown

in Theorem 2.3.1), we know ρ ≤Mmaxφ
2
maxr. Plugging this in, it suffices to show that:

|A| ≤ 1
2r2

exp
(

28C2
minM

2
max

ρ2
log(2r)

)
(A.136)

= 1
2r2

(2r)

[
28C2

minM
2
max

ρ2

]
. (A.137)

Therefore, if we have

|A| ≤ 1
2r2

(2r)

[
28C2

minM
2
max

ρ2

]
, (A.138)

then we know that the probability of failure is at most:

4r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
. � (A.139)

Note that this bound is better than that from separate regressions, though both bounds are loose in terms
of their treatments of shared parameters.

Proof of Corollary 2.3.4: If we wish to have a probability of failure of at most δ when we have n samples,
we may choose ξ accordingly:

2r(|A|r + 1) exp
(
− C4

min
213r4M4

maxφ
8
max

n1−ξ
)
≤ δ (A.140)

log(2r(|A|r + 1))− C4
min

213r4M4
maxφ

8
max

n1−ξ ≤ log δ (A.141)

C4
min

213r4M4
maxφ

8
max

n1−ξ ≥ log 2r(|A|r+1)
δ (A.142)

n1−ξ ≥ 213r4M4
maxφ

8
max

C4
min

log 2r(|A|r+1)
δ (A.143)

(1− ξ) log n ≥ log 213r4M4
maxφ

8
max

C4
min

+ log log 2r(|A|r+1)
δ (A.144)

(1− ξ) ≥ 1
logn

(
log 213r4M4

maxφ
8
max

C4
min

+ log log 2r(|A|r+1)
δ

)
(A.145)

ξ ≤ 1− 1
logn

(
log 213r4M4

maxφ
8
max

C4
min

+ log log 2r(|A|r+1)
δ

)
(A.146)

(A.147)

112

We will set ξ equal to this upper bound in the next part. Likewise, if we wish to have parameter estimation
error at most ε, then we need:

ρmin
4rMmaxφ3max

n−ξ/2 ≤ ε (A.148)

log ρmin
4rMmaxφ3max

− ξ
2 log n ≤ log ε. (A.149)

Rewrite the left-hand side:

log ρmin
4rMmaxφ3max

− ξ
2 log n (A.150)

= log ρmin
4rMmaxφ3max

− 1
2

(
log n−

(
log 213r4M4

maxφ
8
max

C4
min

+ log log 2r(|A|r+1)
δ

))
(A.151)

= 1
2

[
log

ρ2min
24r2M2

maxφ
6
max
− log n+ log 213r4M4

maxφ
8
max

C4
min

+ log log 2r(|A|r+1)
δ

]
(A.152)

= 1
2

[
− log n+ log

29r2M2
maxφ

2
maxρ

2
min

C4
min

+ log log 2r(|A|r+1)
δ

]
. (A.153)

Recombine this left-hand side with Eq. (A.149):

− log n+ log
29r2M2

maxφ
2
maxρ

2
min

C4
min

+ log log 2r(|A|r+1)
δ ≤ 2 log ε (A.154)

log n ≥ log
29r2M2

maxφ
2
maxρ

2
min

C4
min

+ log log 2r(|A|r+1)
δ − 2 log ε (A.155)

n ≥ 29r2M2
maxφ

2
maxρ

2
min

C4
min

1
ε2

log 2r(|A|r+1)
δ (A.156)

If, however, we assume that |A| ≤ 1
2r2

(2r)

[
28C2

minM
2
max

ρ2

]
, then our probability of failure changes, so we

require:

4r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
≤ δ (A.157)

log(4r)− ρ4minn
1−ξ

213r4M4
maxφ

8
max

≤ log δ (A.158)

ρ4minn
1−ξ

213r4M4
maxφ

8
max

≥ log 4r
δ (A.159)

n1−ξ ≥ 213r4M4
maxφ

8
max

ρ4min
log 4r

δ (A.160)

ξ ≤ 1− 1
logn

(
log 213r4M4

maxφ
8
max

ρ4min
+ log log 4r

δ

)
. (A.161)

Plugging this value for ξ into Eq. (A.149), we get:

log ρmin
4rMmaxφ3max

− 1
2

[
1− 1

logn

(
log 213r4M4

maxφ
8
max

ρ4min
+ log log 4r

δ

)]
log n ≤ log ε (A.162)

log
ρ2min

24r2M2
maxφ

6
max
− log n+ log 213r4M4

maxφ
8
max

ρ4min
+ log log 4r

δ ≤ 2 log ε (A.163)

log n ≥ log
ρ2min

24r2M2
maxφ

6
max

+ log 213r4M4
maxφ

8
max

ρ4min
+ log log 4r

δ + log 1
ε2

(A.164)

= log 29r2M2
maxφ

2
max

ρ2min
+ log log 4r

δ + log 1
ε2

(A.165)

n ≥ 29r2M2
maxφ

2
max

ρ2min

1
ε2

log 4r
δ . � (A.166)

113

A.1.4 Disjoint Optimization

Proof of Lemma 2.3.6: Let Mt = |{i : θt ∈ θAi}|.

‖θ̂ − θ∗‖1 =
∑
t

∣∣∣θ̂t − θ∗t ∣∣∣ (A.167)

=
∑
t

∣∣∣∣∣∣ 1
Mt

∑
i : θt∈θAi

θ̂
(Ai)
t − θ∗t

∣∣∣∣∣∣ (A.168)

=
∑
t

1
Mt

∣∣∣∣∣∣
∑

i : θt∈θAi

θ̂
(Ai)
t − θ∗t

∣∣∣∣∣∣ (A.169)

≤
∑
t

1
Mt

∑
i : θt∈θAi

∣∣∣θ̂(Ai)
t − θ∗t

∣∣∣ (A.170)

=
∑
i

∑
t : θt∈θAi

1
Mt

∣∣∣θ̂(Ai)
t − θ∗t

∣∣∣ (A.171)

≤
∑
i

∑
t : θt∈θAi

∣∣∣θ̂(Ai)
t − θ∗t

∣∣∣ (A.172)

≤
∑
i

ε (A.173)

= |A|ε � (A.174)

Proof of Theorem 2.3.7: Lemma 2.3.6 shows we can use Corollary 2.3.2 by shrinking the desired error ε
and the probability of failure δ by factors of 1/|A|. A union bound combines the probabilities of failure.
�

A.1.5 Bounding the KL with Bounds on Parameter Estimation Error

This subsection uses bounds on the parameter estimation error to bound the log loss of our estimated
distribution w.r.t. the target distribution.

The previous theorem demonstrates that there are two convergence regimes. Far from the optimum pa-
rameters, the log loss is approximately linear in the parameter estimation error. Close to the optimum, the
log loss converges quadratically w.r.t. the parameter estimation error.

We prove two lemmas (for the two regimes) before proving the theorem.

Lemma A.1.7. (Third-Order Taylor Expansion) Given a CRF factorizing as in Eq. (A.1) with parameters
θ∗ and maximum feature magnitude φmax, assume that the maximum eigenvalue of the Hessian of the log
loss at θ∗ is Λmax. Then the expected loss using a vector of parameters θ obeys the following bounds:

`L(θ) ≤ `L(θ∗) +
Λmax

2
‖θ − θ∗‖21 + φ3

max‖θ − θ∗‖31 (A.175)

`L(θ) ≤ `L(θ∗) +
Λmax

2
‖θ − θ∗‖22 + φ3

maxr
3/2‖θ − θ∗‖32. (A.176)

114

The second-order term dominates when, respectively,

‖θ − θ∗‖1 ≤ Λmax
2φ3

max

(A.177)

‖θ − θ∗‖2 ≤ Λmax

2r3/2φ3
max

. (A.178)

Proof: Write out the third-order Taylor expansion of the log loss in Eq. (A.2) w.r.t. θ around θ∗:

`L(θ) = `L(θ∗) (A.179)

+1
2(θ − θ∗)T

(
∇2`L(θ∗)

)
(θ − θ∗)

+1
6

∑
i

(θi − θ∗i)(θ − θ∗)T
(

∂
∂θi
∇2`L(θ)

∣∣
θ=αθ+(1−α)θ∗

)
(θ − θ∗),

where α ∈ [0, 1]. Note that the first-order term is 0. Let u = θ − θ∗. The second-order term may be
upper-bounded using the maximum eigenvalue of the Hessian:

1
2u

T
(
∇2`L(θ∗)

)
u ≤ 1

2Λmax‖u‖22 ≤ 1
2Λmax‖u‖21. (A.180)

The third-order term may be upper-bounded as well:

1
6

∑
i

uiu
T
(

∂
∂θi
∇2`L(θ)

∣∣
θ=αθ+(1−α)θ∗

)
u (A.181)

= 1
6

∑
i

ui

(
E
[
φi(u

Tφ)2
]

+ 2E [φi] (E
[
uTφ

]
)2 (A.182)

−E [φi]E
[
(uTφ)2

]
− 2E

[
uTφ

]
E
[
φi(u

Tφ)
])

(A.183)

= 1
6

(
E
[
(uTφ)3

]
+ 2E

[
uTφ

]
(E
[
uTφ

]
)2 − 3E

[
uTφ

]
E
[
(uTφ)2

])
(A.184)

≤
(
E
[
|uTφ|

])3
(A.185)

≤ (φmax‖u‖1)3 ≤
(
φmax

√
r‖u‖2

)3
. � (A.186)

Lemma A.1.8. (First-Order Taylor Expansion) Given a CRF factorizing as in Eq. (A.1) with parameters
θ∗ and maximum feature magnitude φmax, the expected loss using a vector of parameters θ obeys the
following bounds:

`L(θ) ≤ `L(θ∗) + φmax‖θ − θ∗‖1 (A.187)

`L(θ) ≤ `L(θ∗) + φmax
√
r‖θ − θ∗‖2. (A.188)

Proof: Write out the first-order Taylor expansion of the log loss in Eq. (A.2) w.r.t. θ around θ∗:

`L(θ) = `L(θ∗) +
(
∇`L(θ)|θ=αθ+(1−α)θ∗

)
(θ − θ∗), (A.189)

where α ∈ [0, 1]. We can upper-bound the first-order term using Holder’s inequality:(
∇`L(θ)|θ=αθ+(1−α)θ∗

)
(θ − θ∗),

=
(
EP (X)

[
−EPθ(Y |X) [φ(Y,X)] + EPθ(Y ′|X)

[
φ(Y ′, X)

]])
(θ − θ∗) (A.190)

≤
∥∥∥EP (X)

[
−EPθ(Y |X) [φ(Y,X)] + EPθ(Y ′|X)

[
φ(Y ′, X)

]]∥∥∥
∞
‖θ − θ∗‖1 (A.191)

≤ φmax‖θ − θ∗‖1 ≤ φmax
√
r‖θ − θ∗‖2. � (A.192)

115

Proof of Theorem 2.3.5: Let δ = ‖θ − θ∗‖1. Suppose the third-order bound is tighter; i.e.,

Λmax
2 δ2 + φ3

maxδ
3 ≤ φδ (A.193)

φ3
maxδ

2 + Λmax
2 δ − φ ≤ 0. (A.194)

Solving, we get

δ ≤
−Λmax

2 +

√
Λ2
max
4 + 4φ4

max

2φ3
max

. (A.195)

Plugging this into the third-order bound, we can rewrite the third-order bound as:

Λmax
2 δ2 + φ3

maxδ
3 ≤ Λmax

2 δ2 +
−Λmax

2 +

√
Λ2
max
4 + 4φ4

max

2
δ2 (A.196)

= 1
2

(
Λmax

2 +

√
Λ2
max
4 + 4φ4

max

)
δ2 (A.197)

≤ 1
2

(
Λmax

2 + Λmax
2 + 2φ2

max

)
δ2 (A.198)

≤
(

Λmax
2 + φ2

max

)
δ2. � (A.199)

We discuss sample complexity bounds. The key is to establish a bound on the number of samples required
to be in the quadratic convergence regime, after which the proof is trivial. To guarantee that Eq. (2.15)
holds, we can use Corollary 2.3.4 to show it suffices to have:

29r2M2
maxφ

2
max

ρ2min

1
n log 4r

δ ≤

−Λmax
2 +

√
Λ2
max
4 + rφ4

max

2φ3
max

2

(A.200)

=

Λ2
max
4 + Λ2

max
4 + rφ4

max − Λmax

√
Λ2
max
4 + rφ4

max

4φ6
max

(A.201)

=
Λ2
max + 2rφ4

max − Λmax
√

Λ2
max + 4rφ4

max

8φ6
max

(A.202)

n ≥ 212r2M2
maxφ

8
max

ρ2min

(
Λ2
max+2rφ4max−Λmax

√
Λ2
max+4rφ4max

) log 4r
δ (A.203)

In this quadratic regime, to achieve log loss `L(θ∗) + ε, we need:

(
Λmax

2 + φ2
max

) 29r2M2
maxφ

2
max

ρ2min

1
n log 4r

δ ≤ ε (A.204)

n ≥ 28r2M2
maxφ

2
max(Λmax+2φ2max)
ρ2min

1
ε log 4r

δ . (A.205)

Likewise, in the linear regime, we need:

n ≥ 29r2M2
maxφ

3
max

ρ2min

1
ε log 4r

δ . (A.206)

116

A.2 Canonical Parametrization: Proofs from Sec. 2.6

A.2.1 Proof of Theorem 2.6.14

We hide X in this proof since it does not play a role.

In Eq. (2.50), we can write each local conditional probability in terms of its factorization according to
Eq. (2.49), where we write Zi to denote the partition function for the local conditional distribution:

log f∗j (YC∗j) (A.207)

=
∑
U⊆C∗j

(−1)|C
∗
j \U | logP

(
Yij [YU , y\U]

∣∣MBYij [YU , y\U]
)

(A.208)

=
∑
U⊆C∗j

(−1)|C
∗
j \U |

−Zij (MBYij [YU , y\U]
)

+
∑

k : ij∈Ck

log φ
(ij)
k (YU , y\U)

 . (A.209)

There are two terms in the brackets: the partition function and a sum over factors. Consider the partition
function only, and examine the sum over U . The partition function does not depend on Yij , so a set U
containing Yij and a set U ′ not containing Yij will produce the same value for Zi. Since Yij ∈ C∗j , we
may pair up subsets U of C∗j s.t. each pair contains one set U and one set U ′ = U ∪ {Yij}. Substituting
Eq. (A.209) into Eq. (2.51) and removing the local partition functions gives us:

P (Y) ∝
J∗∏
j=1

exp

 ∑
U⊆C∗j

(−1)|C
∗
j \U |

∑
k : ij∈Ck

log φ
(ij)
k (YU , y\U)

 (A.210)

= exp

 J∗∑
j=1

∑
U⊆C∗j

(−1)|C
∗
j \U |

∑
k : ij∈Ck

log φ
(ij)
k (YU , y\U)

 . (A.211)

Suppose that we have no conflicting factor estimates; then for each k, φ(ij)
k are equal for all ij , so the

estimate in Eq. (A.211) equals the pseudolikelihood estimate (as proven in Theorem 2.6.13).

Now, recall that we assumed that there exists a factor φk(YCk , XDk) with at least two arguments in Y; let
i ∈ Ck index one of these arguments. One canonical factor j is defined by C∗j = {i}; For this canonical
factor, we must let ij = i. All other canonical factors j′ must include arguments other than i in C∗j′ ; for
these canonical factors, let ij 6= i.

The terms in the exponential in Eq. (A.211) corresponding to this original factor k and this canonical
factor j (and its ij = i) are:∑

U⊆C∗j

(−1)|C
∗
j \U | log φ

(ij)
k (YU , y\U) = log φ

(i)
k (Yi, y\i)− log φ

(i)
k (y) , (A.212)

where we used C∗j = {i}. Note that our choices of ij for the other canonical factors j imply that these

terms are the only ones in Eq. (A.211) which involve φ(ij)
k . Keeping all other factor estimates non-

conflicting, modify the value of φ(i)
k (Yi, y\i) to an arbitrary conflicting value for each value of Yi. Since

φ
(i)
k (Yi, y\i) does not appear anywhere else in the canonical parametrization, the canonical parametrization

estimate of P (Y|X) must have changed for at least one value of Yi. Therefore, the canonical parametriza-
tion and the pseudolikelihood estimates are no longer equal. �

117

A.2.2 Proof of Theorem 2.6.16

We hide X in this proof since it does not play a role.

Beginning with Eq. (2.56), rewrite each local conditional probability in terms of its factorization according
to Eq. (2.49), where we write Zi to denote the partition function for the local conditional:

1

|C∗j |
∑
i∈C∗j

∑
U⊆C∗j

(−1)|C
∗
j \U | logP

(
Yi[YU , y\U]

∣∣YNi [YU , y\U]
)

(A.213)

=
1

|C∗j |
∑
i∈C∗j

∑
U⊆C∗j

(−1)|C
∗
j \U |

[
−Zi

(
YNi [YU , y\U]

)
+

∑
k : i∈Ck

log φ
(i)
k (YU , y\U)

]
. (A.214)

There are two terms in the brackets: the partition function and a sum over factors. Consider the partition
function only, and examine the sum over U . The partition function does not depend on Yi, so a set U
containing Yi and a set U ′ not containing Yi will produce the same value for Zi. Since Yi ∈ C∗j , we
may pair up subsets U of C∗j s.t. each pair contains one set U and one set U ′ = U ∪ {Yi}. Substituting
Eq. (A.214) into Eq. (2.51) and removing the local partition functions gives us:

P (Y) = P (y)

J∗∏
j=1

exp

 1

|C∗j |
∑
i∈C∗j

∑
U⊆C∗j

(−1)|C
∗
j \U |

∑
k : i∈Ck

log φ
(i)
k (YU , y\U)

 (A.215)

= P (y) exp

 J∗∑
j=1

1

|C∗j |
∑
i∈C∗j

∑
U⊆C∗j

(−1)|C
∗
j \U |

∑
k : i∈Ck

log φ
(i)
k (YU , y\U)

 (A.216)

= P (y) exp

∑
i

∑
j : i∈C∗j

1

|C∗j |
∑
U⊆C∗j

(−1)|C
∗
j \U |

∑
k : i∈Ck

log φ
(i)
k (YU , y\U)

 (A.217)

= P (y) exp

∑
i

∑
k : i∈Ck

∑
j : i∈C∗j

1

|C∗j |
∑
U⊆C∗j

(−1)|C
∗
j \U | log φ

(i)
k (YU , y\U)

 (A.218)

= P (y) exp

∑
k

∑
i∈Ck

∑
j : i∈C∗j

1

|C∗j |
∑
U⊆C∗j

(−1)|C
∗
j \U | log φ

(i)
k (YU , y\U)

 . (A.219)

Consider the sum ∑
j : i∈C∗j

1

|C∗j |
∑
U⊆C∗j

(−1)|C
∗
j \U | log φ

(i)
k (YU , y\U). (A.220)

If a given j corresponds to a C∗j which contains an index t not appearing in Ck (i.e., t ∈ C∗j and t /∈ Ck),
then∑
U⊆C∗j

(−1)|C
∗
j \U | log φ

(i)
k (YU , y\U) =

∑
U⊆(C∗j \{t})

(−1)|C
∗
j \U |

(
log φ

(i)
k (YU , y\U)− log φ

(i)
k (YU∪{t}, y\(U∪{t}))

)
.

(A.221)
Since t /∈ Ck, it is not an argument of the function φ(i)

k , so the two log terms cancel out. Therefore, we
may assume that the sum over C∗j is only over subsets of Ck which contain i:

P (Y) ∝ exp

∑
k

∑
i∈Ck

∑
C∗⊆(Ck\{i})

1
|C∗|+1

∑
U⊆(C∗∪{i})

(−1)|(C
∗∪{i})\U | log φ

(i)
k (YU , y\U)

 . (A.222)

118

We can swap the sums over C∗ and U :∑
C∗⊆(Ck\{i})

1
|C∗|+1

∑
U⊆(C∗∪{i})

(−1)|(C
∗∪{i})\U | log φ

(i)
k (YU , y\U) (A.223)

=
∑

C∗⊆(Ck\{i})

1
|C∗|+1

∑
U⊆C∗

(−1)|C
∗\U |

[
log φ

(i)
k (YU∪i, y\U\i)− log φ

(i)
k (YU , yi, y\U\i)

]
(A.224)

=
∑

U⊆(Ck\i)

 ∑
C∗∗⊆(Ck\i)\U

1
|C∗∗|+|U |+1 (−1)|C

∗∗|

[log φ
(i)
k (YU∪i, y\U\i)− log φ

(i)
k (YU , yi, y\U)

]
,(A.225)

where we are setting C∗ = U ∪C∗∗. Abbreviate w(i, k, U) =
∑

C∗∗⊆(Ck\i)\U
1

|C∗∗|+|U |+1(−1)|C
∗∗|, and

plug Eq. (A.225) back into Eq. (A.222).

P (Y) ∝ exp

∑
k

∑
i∈Ck

∑
U⊆(Ck\i)

w(i, k, U)
[
log φ

(i)
k (YU∪i, y\U\i)− log φ

(i)
k (YU , yi, y\U)

] (A.226)

Recall that the pseudolikelihood estimate with disjoint regressions and factor averaging is:

P (Y) ∝ exp

(∑
k

∑
i∈Ck

1
|Ck| log φ

(i)
k (YCk)

)
. (A.227)

Since we assumed that factor estimates may conflict in Eq. (A.226), we can adjust values of φ(i)
k arbitrarily

for any k, i, U and values of Y , as in the proof of Theorem 2.6.14. Therefore, in order for the right-hand
side of Eq. (A.226) to be proportional to the right-hand side of Eq. (A.227), we would need∑

U⊆(Ck\i)

w(i, k, U)
[
log φ

(i)
k (YU∪i, y\U\i)− log φ

(i)
k (YU , yi, y\U)

]
= 1

|Ck| log φ
(i)
k (YCk) (A.228)

to hold for all k, i ∈ Ck. Fix k, i ∈ Ck. Pick a U ⊆ Ck \ i s.t. w(i, k, U) 6= 0. We can adjust the values
φ

(i)
k (YU∪i, y\U\i), φ

(i)
k (YU , yi, y\U) arbitrarily, so we can shift them s.t. the canonical parametrization

and pseudolikelihood estimates of P̂ (Y|X) are different, just as in the proof of Theorem 2.6.14. �

Additional Calculations

Consider the sum over C∗∗ in w(i, k, U):

∑
C∗∗⊆(Ck\i)\U

1
|C∗∗|+|U |+1 (−1)|C

∗∗| =

|(Ck\i)\U |∑
n=0

(|(Ck\i)\U |
n

)
1

n+|U |+1 (−1)n . (A.229)

Using the identity
∑n

k=0

(
n
k

)
1
k+r (−1)k =

(
n+r
r

)−1
/r from Gould [2010], where we let n = |(Ck \ i) \U |

and r = |U |+ 1, this sum becomes:

|(Ck\i)\U |∑
n=0

(|(Ck\i)\U |
n

)
1

n+|U |+1 (−1)n =
(|Ck|
|U |+1

)−1 1
|U |+1 . (A.230)

Plugging this into Eq. (A.222) and Eq. (A.225) gives:

P (Y) ∝ exp

∑
k

∑
i∈Ck

∑
U⊆(Ck\i)

(|Ck|
|U |+1

)−1 1
|U |+1

[
log φ

(i)
k (YU∪i, y\U\i)− log φ

(i)
k (YU , yi, y\U)

] .(A.231)

119

Note
(|Ck|
|U |+1

)−1 1
|U |+1 = 1

|Ck| when U = ∅.

A.2.3 Proof of Theorem 2.6.17

Instantiate Theorem 2.6.15 (averaged ij) for pairwise models with X = ∅:

logP (Y) = logP (y) +
∑
i

(
1− |Ni|2

) [
logP (Yi|yNi)− logP (yi|yNi)

]
(A.232)

+ 1
2

∑
j∈Ni

logP (Yi|Yj , yNi\j)− logP (yi|Yj , yNi\j) .

Take the difference between the canonical parametrizations for P (Y) (as in Eq. (A.232)) and Q(Y) (as in
Eq. (A.232), but with P,Q switched.

logQ(Y)− logP (Y) (A.233)
= logQ(y)− logP (y)

+
∑
i

(
1− |Ni|2

) [
logQ(Yi|yNi)− logP (Yi|yNi)− logQ(yi|yNi) + logP (yi|yNi)

]
+ 1

2

∑
j∈Ni

logQ(Yi|Yj , yNi\j)− logP (Yi|Yj , yNi\j)− logQ(yi|Yj , yNi\j) + logP (yi|Yj , yNi\j) .

Apply Theorem 2.6.12 (reference assignment averaging) by taking the expectation over y w.r.t. P (Y).
Also, take the expectation over Y w.r.t. Q(Y). Letting Pi

.
= P (Yi|YNi) and Qi

.
= Q(Yi|YNi), we

get:

KL(Q‖P) +KL(P‖Q) (A.234)

=
∑
i

(
1− |Ni|2

)
EP (YNi)

[
EQ(Yi) [logQi − logPi]−EP (Yi|YNi) [logQi − logPi]

]
+ 1

2

∑
j∈Ni

EQ(Yj)P (YNi\j)

[
EQ(Yi|Yj) [logQi − logPi]−EP (Yi|YNi\j) [logQi − logPi]

]
.

Rearranging terms gives the theorem’s result:

KL(P‖Q) +KL(Q‖P) (A.235)

=
∑
i

(
1− |Ni|2

)
EP (YNi)

[
EP (Yi|YNi) [logPi − logQi] + EQ(Yi) [logQi − logPi]

]
+ 1

2

∑
j∈Ni

EQ(Yj)P (YNi\j)

[
EP (Yi|YNi\j) [logPi − logQi] + EQ(Yi|Yj) [logQi − logPi]

]
.

�

120

Appendix B

Parallel Regression

B.1 Proofs

B.1.1 Detailed Proofs: β for Squared Error and Logistic Loss

Assumption 4.2.1 and Assumption 4.3.1 both upper bound the change in objective from updating x with
∆x. We show how to do so for Assumption 4.3.1, which generalizes Assumption 4.2.1. For both losses,
we upper-bound the objective using a second-order Taylor expansion of F around x. Note that we do not
use duplicated features in this section, but that does not affect the resulting β values.

Proof: β for Squared Error

The first and second derivatives of the L1-regularized squared error (with duplicated features so weights
are non-negative) are:

∇F (x) = ATAx−ATy + λ1 (B.1)

∇2F (x) = ATA , (B.2)

where 1 is an all-ones vector of the appropriate size. Note that, since derivatives of Eq. (4.2) of order
higher than two are zero, the second order Taylor expansion is exact:

F (x + ∆x) = F (x) + (∆x)T∇F (x) + 1
2(∆x)T∇2F (x)∆x (B.3)

Plugging in the second order derivative gives β = 1:

F (x + ∆x) = F (x) + (∆x)T∇F (x) + 1
2(∆x)TATA∆x . (B.4)

This bound is exact for squared error but not for all losses.

121

Proof: β for Logistic Loss

Define pi = 1
1+exp(−yiaTi x)

, the class conditional probability of yi given ai. The first and second derivative

of the logistic loss with L1 regularization are:

∂
∂xj

F (x) = λ+

n∑
i=1

yiAij (pi − 1) (B.5)

∂2

∂xj∂xk
F (x) =

n∑
i=1

AijAik (1− pi) pi . (B.6)

Taylor’s theorem tells us that there exists an x̂ s.t.

F (x + ∆x) ≤ F (x) + (∆x)T∇F (x) + 1
2(∆x)T (∇2F (x̂))∆x . (B.7)

The second-order term is maximized by setting pi = 1
2 in the second derivative ∂2

∂xj∂xk
F (x) for each j, k.

Plugging in this value gives our bound with β = 1
4 :

F (x + ∆x) ≤ F (x) + (∆x)T∇F (x) +
1

2

(∆x)TATA∆x

4
. (B.8)

B.1.2 Duplicated Features

Our work, like Shalev-Schwartz and Tewari [2009], uses duplicated features (with x ∈ R2d and A ∈
Rn×2d), but our actual implementation does not (x ∈ Rd+ and A ∈ Rn×d). They point out that the
optimization problems with and without duplicated features are equivalent.

To see this, consider the form of F (x) in Eq. (4.4). xj only appears in the dot product âTi x via Ai,jxj ,
and xd+j only appears via −Ai,jxd+j , where A is the original design matrix without duplicated features.
Suppose xj > 0 and xd+j > 0, and assume w.l.o.g. that xj > xd+j . Then setting xj ←− xj − xd+j

and xd+j ←− 0 would give the same value for the loss term L(âTi x, yi), and it would decrease the
regularization penalty by 2λxd+j . Therefore, at the optimum, at most one of xj , xd+j will be non-zero,
and the objectives with and without duplicated features will be equal.

B.1.3 Detailed Proof: Theorem 4.2.1

Define a potential function, where x∗ is the optimal weight vector:

Ψ(x) =
β

2
‖x− x∗‖22 + F (x) . (B.9)

Claim: After updating weight xj with δxj ,

Ψ(x)−Ψ(x + ∆x) ≥ (xj − x∗j)(∇F (x))j . (B.10)

122

To see this:

Ψ(x)−Ψ(x + ∆x) = β
2

[
‖x− x∗‖22 − ‖x + ∆x− x∗‖22

]
+ F (x)− F (x + ∆x) (B.11)

= −β
2

[
2(x− x∗)T∆x + (δxj)

2
]

+ F (x)− F (x + ∆x) (B.12)

≥ β
(
−xT∆x + x∗T∆x− (δxj)

2

2

)
− (∆x)T∇F (x)− β

2 (δxj)
2 (B.13)

= β
(
−xjδxj + x∗jδxj − (δxj)

2
)
− δxj(∇F (x))j (B.14)

≥ β
(
−xjδxj − (δxj)

2
)
− x∗j (∇F (x))j − δxj(∇F (x))j . (B.15)

Above, Eq. (B.13) used Assumption 4.2.1. Eq. (B.15) used the update rule for choosing δxj in Eq. (4.5).
Now there are two possible cases stemming from the update rule. Case 1: If δxj = −xj , then Eq. (B.15)
simplifies to

Ψ(x)−Ψ(x + ∆x) ≥ (xj − x∗j)(∇F (x))j . (B.16)

Case 2: If δxj = −(∇F (x))j/β, then Eq. (B.15) again simplifies to

Ψ(x)−Ψ(x + ∆x) ≥ xj(∇F (x))j − β(δxj)
2 − x∗j (∇F (x))j + β(δxj)

2 (B.17)

= (xj − x∗j)(∇F (x))j . (B.18)

Having proven our claim, we can now take the expectation of Eq. (B.10) w.r.t. j, the chosen weight:

E [Ψ(x)−Ψ(x + ∆x)] ≥ E
[
(xj − x∗j)(∇F (x))j

]
(B.19)

=
1

2d
E
[
(x− x∗)T∇F (x)

]
(B.20)

≥ 1

2d
E [F (x)− F (x∗)] . (B.21)

In Eq. (B.20), we write 1
2d instead of 1

d (which Shalev-Schwartz and Tewari [2009] write), for there are
another d duplicates of each of the original d weights. Eq. (B.21) holds since F (x) is convex.

Summing over T + 1 iterations gives:

E

[
T∑
t=0

Ψ(x(t))−Ψ(x(t+1))

]
≥ 1

2d
E

[
T∑
t=0

F (x(t))

]
− T + 1

2d
F (x∗) (B.22)

≥ T + 1

2d

[
E
[
F (x(T))

]
− F (x∗)

]
. (B.23)

Eq. (B.23) used the fact that F (xt) decreases monotonically with t. Since
∑T

t=0 Ψ(x(t)) − Ψ(x(t+1)) =
Ψ(x(0))−Ψ(x(T+1)), rearranging the above inequality gives

E [F (xT)]− F (x∗) ≤ 2d

T + 1
E
[
Ψ(x(0))−Ψ(x(T+1))

]
(B.24)

≤ 2d

T + 1
E
[
Ψ(x(0))

]
(B.25)

=
2d

T + 1

[
β

2
‖x∗‖22 + F (x(0))

]
, (B.26)

where Eq. (B.25) used Ψ(x) ≥ 0 and Eq. (B.26) used x(0) = 0.

This bound divides by T + 1 instead of T (which Shalev-Schwartz and Tewari [2009] do). Also, their
theorem has an extra factor of 1

2 on the right-hand side but should not due to the doubled length of x.

123

B.1.4 Detailed Proof: Theorem 4.3.1

Start with Eq. (B.4), and note that the update rule in Eq. (4.5) implies that δxj ≤ −(∇F (x))j (with β = 1
for Lasso). This gives us:

F (x + ∆x)− F (x) ≤ −(∆x)T (∆x) + 1
2(∆x)TATA∆x . (B.27)

Noting that ∆x can only have non-zeros in the indices in Pt, we can rewrite this as

F (x + ∆x)− F (x) ≤ −
∑
j∈Pt

(δxj)
2 + 1

2

∑
i,j∈Pt

(ATA)i,jδxiδxj . (B.28)

Separating out the diagonal terms in the sum over i, j and using diag(ATA) = 1 gives the desired
result:

F (x + ∆x)− F (x) ≤ −1
2

∑
j∈Pt

(δxj)
2 + 1

2

∑
i,j∈Pt,
i 6=j

(ATA)i,jδxiδxj . (B.29)

B.1.5 Detailed Proof: Theorem 4.3.2

This proof uses the result from Lemma 4.3.3, which is proven in detail in Sec. B.1.6.

We modify the potential function used for sequential SCD:

Ψ(x) =
β

2
‖x− x∗‖22 + 1

1−εF (x), (B.30)

where ε is defined as in Eq. (B.61). Assume that P is chosen s.t. ε < 1.

Write out the change in the potential function from an update ∆x, and rearrange terms algebraically:

Ψ(x)−Ψ(x + ∆x)

= β
2

[
‖x− x∗‖22 − ‖x + ∆x− x∗‖22

]
+ 1

1−ε [F (x)− F (x + ∆x)] (B.31)

= β
2

[
−2xT∆x + 2x∗T∆x− (∆x)T (∆x)

]
+ 1

1−ε [F (x)− F (x + ∆x)] (B.32)

= β

∑
j∈Pt

−xjδxj + x∗jδxj −
(δxj)

2

2

+ 1
1−ε [F (x)− F (x + ∆x)] . (B.33)

Take the expectation w.r.t. Pt, and use Lemma 4.3.3:

EPt [Ψ(x)−Ψ(x + ∆x)]

= βPEj

[
−xjδxj + x∗jδxj −

(δxj)
2

2

]
+ 1

1−εEPt [F (x)− F (x + ∆x)] (B.34)

≥ βPEj
[
−xjδxj + x∗jδxj −

(δxj)
2

2

]
− P 1

1−εEj

[
δxj(∇F (x))j + β

2 (1 + ε)(δxj)
2

]
(B.35)

= βPEj

[
−xjδxj + x∗jδxj − 1

1−ε(δxj)
2
]
− P 1

1−εEj [δxj(∇F (x))j] (B.36)

≥ βPEj
[
− xjδxj − x∗j (∇F (x))j/β − 1

1−ε(δxj)
2 − 1

1−εδxj(∇F (x))j/β

]
. (B.37)

124

The last inequality used the update rule in Eq. (4.5), which implies δxj ≥ −(∇F (x))j/β.

Consider the two cases in the update rule in Eq. (4.5). Case 1: The update implies δxj = −xj ≥
−(∇F (x))j/β, so

EPt [Ψ(x)−Ψ(x + ∆x)]

≥ βPEj
[
− xjδxj − x∗j (∇F (x))j/β + 1

1−εxjδxj + 1
1−εxj(∇F (x))j/β

]
(B.38)

= βPEj

[
ε

1−εxjδxj − x
∗
j (∇F (x))j/β + 1

1−εxj(∇F (x))j/β

]
(B.39)

≥ βPEj
[
− ε

1−εxj(∇F (x))j/β − x∗j (∇F (x))j/β + 1
1−εxj(∇F (x))j/β

]
(B.40)

= PEj

[
(xj − x∗j)(∇F (x))j

]
. (B.41)

Case 2: The update implies δxj = −(∇F (x))j/β ≥ −xj , so

EPt [Ψ(x)−Ψ(x + ∆x)] ≥ βPEj

[
− xjδxj − x∗j (∇F (x))j/β

]
(B.42)

≥ PEj

[
(xj − x∗j)(∇F (x))j

]
. (B.43)

In both cases,

EPt [Ψ(x)−Ψ(x + ∆x)] ≥ PEj
[
(xj − x∗j)(∇F (x))j

]
(B.44)

= P
2d(x− x∗)T∇F (x) (B.45)

≥ P
2d(F (x)− F (x∗)), (B.46)

where the last inequality holds since F (x) is convex.

Now sum over T + 1 iterations (with an expectation over the Pt from all iterations):

E

[
T∑
t=0

Ψ(x(t))−Ψ(x(t+1))

]
≥ P

2dE

[
T∑
t=0

F (x(t))− F (x∗)

]
(B.47)

= P
2d

[
E

[
T∑
t=0

F (x(t))

]
− (T + 1)F (x∗)

]
(B.48)

≥ P(T+1)
2d

[
E
[
F (x(T))

]
− F (x∗)

]
, (B.49)

where Eq. (B.49) uses the result from Lemma 4.3.3, which implies that the objective is decreasing in
expectation for P s.t. ε ≤ 1. (To see why the objective decreases in expectation, plug in the update rule in
Eq. (4.5) into Eq. (B.62), and note that the right-hand side of Eq. (B.62) is negative.)

Since
∑T

t=0 Ψ(x(t))−Ψ(x(t+1)) = Ψ(x(0))−Ψ(x(T+1)), rearranging the above inequality gives

E
[
F (x(T))

]
− F (x∗) ≤ 2d

P(T+1)E
[
Ψ(x(0))−Ψ(x(T+1))

]
(B.50)

≤ 2d
P(T+1)E

[
Ψ(x(0))

]
(B.51)

= 2d
P(T+1)

[
β
2 ‖x

∗‖22 + 1
1−εF (x(0))

]
. (B.52)

125

B.1.6 Detailed Proof: Lemma 4.3.3

Note: In this section, we assume the algorithm chooses a set of P distinct coordinates, not a multiset of
coordinates. We mention analogous results for a multiset in Sec. B.1.7.

Starting with Assumption 4.3.1, we can rearrange terms as follows:

F (x + ∆x)− F (x) ≤ (∆x)T∇F (x) + β
2 (∆x)TATA(∆x) . (B.53)

Take the expectation w.r.t. Pt, the set of updated weights, and use the fact that each set Pt is equally likely
to be chosen.

EPt [F (x + ∆x)− F (x)]

≤ EPt

∑
j∈Pt

δxj(∇F (x))j

+ β
2EPt

 ∑
i,j∈Pt

δxi(A
TA)i,jδxj

 (B.54)

= EPt

∑
j∈Pt

δxj(∇F (x))j + β
2 (δxj)

2

+ β
2EPt

 ∑
i,j∈Pt
i 6=j

δxi(A
TA)i,jδxj

 (B.55)

= PEj

[
δxj(∇F (x))j + β

2 (δxj)
2
]

+ β
2P(P− 1)Ei,j : i 6=j

[
δxi(A

TA)i,jδxj
]
, (B.56)

where Ej [] denotes an expectation w.r.t. j chosen uniformly at random from {1, . . . , 2d} and where
Ei,j : i 6=j [] denotes an expectation w.r.t. a pair of distinct indices i, j chosen uniformly at random from
{1, . . . , 2d}.

Since indices in Pt are chosen uniformly at random, the expectations may be rewritten as

EPt [F (x + ∆x)− F (x)] (B.57)

≤ P
2d

[
(∆x)T (∇F (x)) + β

2 (∆x)T (∆x)
]

(B.58)

+β
2

P(P−1)
2d(2d−1)

[
(∆x)TATA(∆x)− (∆x)T (∆x)

]
,

where we are overloading the notation ∆x: in Eq. (B.57), ∆x only has non-zero entries in elements
indexed by Pt; in Eq. (B.58), ∆x can have non-zero entries everywhere (set by the update rule in
Eq. (4.5)).

The spectral radius, i.e., the largest absolute eigenvalue, of a matrix M may be expressed as maxz
zTMz
zT z

;
see, e.g., Gilbert [1988]. Letting ρ be the spectral radius of ATA, upper-bound the second-order term in
Eq. (B.58):

EPt [F (x + ∆x)− F (x)]

≤ P
2d

[
(∆x)T (∇F (x)) + β

2 (∆x)T (∆x)
]

(B.59)

+β
2

P(P−1)
2d(2d−1)

[
ρ(∆x)T (∆x)− (∆x)T (∆x)

]
= P

2d(∆x)T (∇F (x)) (B.60)

+β
2

P
2d

(
1 + (P−1)(ρ−1)

2d−1

)
(∆x)T (∆x) .

126

Letting
ε = (P−1)(ρ−1)

2d−1 , (B.61)

we can rewrite the right-hand side in terms of expectations over j ∈ {1, . . . , 2d} to get the lemma’s
result:

EPt [F (x + ∆x)− F (x)] ≤ PEj

[
δxj(∇F (x))j + β

2 (1 + ε)(δxj)
2
]
. (B.62)

B.1.7 Shotgun with a Multiset

If we let the algorithm choose a multiset, rather than a set, of P coordinates, then we get ε = (P−1)ρ
2d , which

gives worse scaling than the ε above. (Compare the two when all features are uncorrelated so that ρ = 1.
With a set, the ε above indicates that we can use P = 2d and get good scaling; with a multiset, the changed
ε indicates that we can be hurt by using larger P.) This modified analysis assumes that parallel updates of
the same weight xj will not make xj negative. Proper write-conflict resolution can ensure this assumption
holds and is viable in our multicore setting.

B.2 Details of Algorithm Runtimes in Tab. 4.1

We list details of the algorithm runtimes in Tab. 4.1, giving references back to the original works where
needed. We try not to repeat elements discussed in Sec. 4.4.

B.2.1 Coordinate Descent

Cyclic CD: We use Theorem 16 from Saha and Tewari [2010], using the L2 norm for Equation 5 in
Definition 1: L2 = n2d. This bound requires the isotonicity assumption. For Lasso, the isotonicity
assumption is equivalent to assuming that (ATA)ij ≤ 0, ∀i 6= j.

Stochastic CD (SCD): We use the results from Shalev-Schwartz and Tewari [2009], replicated in
Theorem 4.2.1. We approximate 1

nFLasso(0) = 1
n‖y‖

2
2 ≈ 1.

Greedy CD: We use Lemma 1 from Dhillon et al. [2011], with K1 = d.

B.2.2 Iterative Shrinkage/Thresholding

Relative to GPSR-BB and SpaRSA, the algorithm FPC AS [Wen et al., 2010] requires an extra factor of
d computations per iteration, for it solves subproblems using a second-order method. Note, however, that
these subproblems involve only an active set of coordinates, which can be smaller than d.

B.2.3 Compressed Sensing

We do not include iteration bounds for Hard l0 [Blumensath and Davies, 2009] or CoSaMP [Needell and
Tropp, 2010]. These algorithms are analyzed within the compressed sensing literature, which generally
focuses on recovery (discovering a “true” x) rather than our goal of minimizing an objective.

127

B.2.4 Homotopy

Our bounds for LARS are from Section 7 of Efron et al. [2004].

B.2.5 Stochastic Gradient

For the four SGD variants in Tab. 4.1, all bounds use asymptotically optimal learning rates.

Vanilla SGD: We use the analysis from Boyd and Mutapcic [2008]; since this analysis requires that the
gradient be bounded, we omit an iteration bound for Lasso. The logistic loss iteration bound is technically
w.r.t. the best iterate x(t), not the last.

TruncGrad: Langford et al. [2009a] present a generalization of soft thresholding but only prove conver-
gence bounds for the special case of soft thresholding, in their Theorem 3.2.

Since Theorem 3.2 bounds the average objective F (x(t), ·) over all iterations t, the bound we state in
Tab. 4.1 is actually not for the objective at the final iterate. Also, Theorem 3.2 technically applies to
modified iterates x̂(t) which are averages over all previous iterates x(t′), t′ ≤ t. Note also that their
bounds use a different objective, with the loss normalized for sample size (by 1/n); this makes no real
difference, for if we redo our analysis with this modified objective, we end up with essentially the same
bounds. We therefore use the same notation F (·) for the objective.

For logistic loss, Theorem 3.2 from Langford et al. [2009a] states:

E
[
F (x(T), λ)

]
≤ κ21

2 η +
‖x∗‖22
2ηT + F (x∗, λ) . (B.63)

Rearranging terms, we get:

E
[
F (x(T), λ)

]
− F (x∗, λ) ≤ κ21

2 η +
‖x∗‖22
2ηT . (B.64)

Optimizing η gives η = ‖x∗‖2
κ1
√
T

. Plugging this in gives:

E
[
F (x(T), λ)

]
− F (x∗, λ) ≤ κ1‖x∗‖2√

T
. (B.65)

For least squares, Theorem 3.2 says:

E
[
(1− 2κ2

1η)F
(
x(T), λ

1−2κ21η

)]
≤ ‖x∗‖22

2ηT + F (x∗, λ) , (B.66)

Replace λ with (1− 2κ2
1η)λ:

E
[
(1− 2κ2

1η)F (x(T), λ)
]
≤ ‖x∗‖22

2ηT + F
(
x∗, (1− 2κ2

1η)λ
)

(B.67)

=
‖x∗‖22
2ηT + F (x∗, λ)− 2κ2

1η‖x∗‖1 . (B.68)

Multiply both sides by 1/(1− 2κ2
1η), and rearrange terms:

E
[
F (x(T), λ)

]
≤ 1

1−2κ21η

‖x∗‖22
2ηT + 1

1−2κ21η
F (x∗, λ)− 2κ21η

1−2κ21η
‖x∗‖1 (B.69)

128

E
[
F (x(T), λ)

]
− F (x∗, λ) ≤ 1

1−2κ21η

‖x∗‖22
2ηT +

2κ21η

1−2κ21η
F (x∗, λ)− 2κ21η

1−2κ21η
‖x∗‖1 (B.70)

= 1
1−2κ21η

‖x∗‖22
2ηT +

2κ21η

1−2κ21η
F (x∗, λ− 1) (B.71)

= 1
1−2κ21η

(
‖x∗‖22
2ηT + 2κ2

1ηF (x∗, λ− 1)
)

(B.72)

If we ignore the leading 1
1−2κ21η

factor, optimizing η gives us η = 1
2
‖x∗‖2
κ1
√
T

, which is 1/2 times the optimal
η for logistic loss. Plugging this in, we get:

E
[
F (x(T), λ)

]
− F (x∗, λ) ≤ 1

1−κ1
‖x∗‖2√

T

‖x∗‖2κ1√
T

+
κ1
‖x∗‖2√

T

1−κ1
‖x∗‖2√

T

F (x∗, λ− 1) (B.73)

= 1

1−κ1‖x
∗‖2√
T

κ1‖x∗‖2√
T

(1 + F (x∗, λ− 1)) (B.74)

≈ κ1‖x∗‖2√
T

(1 + F (x∗, λ− 1)) , (B.75)

where the last approximate equality assumes that T is large enough that κ1‖x
∗‖2√
T

is small. In Tab. 4.1, we
ignore the (1 + F (x∗, λ− 1)) term, which is relatively small since the loss is normalized by 1/n.

SMIDAS: We use Theorem 2 from Shalev-Schwartz and Tewari [2009].

RDA: The Lasso iteration bound is for the constraint formulation in Eq. (4.12). Their analysis technically
does not apply to the penalty formulation in Eq. (4.2), for Theorem 2 in Xiao [2010] requires that the
gradient be bounded on the feasible region. In their Theorem 2, we use L2 = c2n2d for Lasso and
L2 = n2κ1 for logistic regression. RDA takes d operations per iteration, for it maintains a sum of all
gradients, which will be dense in general.

Scaling w.r.t. dimensionality d: The SGD bounds all include additional factors which can increase as
O(d). The value κ1

.
= maxi‖ai‖22 can increase linearly in d if the average element magnitude of ai

remains constant. The bound ‖x∗‖21 ≤ ‖x∗‖0‖x∗‖22 can be tight, and ‖x∗‖0 could grow linearly in d, so
the ‖x∗‖21 factor in SMIDAS’s bound could be replaced with d‖x∗‖22 in the worst case.

B.2.6 Accelerated

FISTA: The bound in Tab. 4.1 uses Theorem 4.4 from Beck and Teboulle [2009], in which we let α = 1
(for constant stepsize), we use the L2 norm for ‖x∗‖, and the Lipschitz constant is L = ρ for both Lasso
and logistic regression. Each iteration takes an unknown number of sub-iterations k for a backtracking
line search.

B.2.7 Interior Point

Since Kim et al. [2007] and Koh et al. [2007] do not provide convergence analysis, we use the analysis
from Boyd and Vandenberghe [2004] for iteration bounds (the number of centering steps). In these bounds,
ε is the duality gap, which is related to but not identical to the distance from the optimum. The iteration
bound is on the total number of inner iterations (conjugate gradient steps) within each outer iteration
(centering step). The cost per iteration is the cost of one conjugate gradient step. Both methods phrase L1

regularization in constraint form using 2d constraints.

129

L1 LS and L1 logreg: We use the iteration bound from Section 11.3.3 from Boyd and Vandenberghe
[2004]. The number k of inner iterations (of conjugate gradient) does not appear in the iteration cost, for
the knds cost of conjugate gradient is outweighed by the nd2 cost of computing the Hessian.

We approximate κ3 ≈
√
d based on the iteration bound from Section 11.5.3 from Boyd and Vandenberghe

[2004]. This bound is technically applicable to squared error but not logistic loss. Also, this bound is based
on Newton steps instead of conjugate gradient, so this approximation is an underestimate.

The Hessian computation prevents this method from scaling with the sparsity of A. The conjugate gradient
steps do scale with the sparsity of A but are outweighted by the Hessian computation.

B.2.8 Distributed

ADMM: See Sec. 4.4.5.

DDA: The convergence bounds we state are for expander graphs (item (d) in Corollary 1 of Theorem 2
from Duchi et al. [2012]), which have the best convergence rate of the graphs they consider. Using the
proximal function Ψ(x) = 1

2‖x‖
2
2, we get R = 1√

2
‖x∗‖2. We use the constraint formulation since their

proofs require that the loss be Lipschitz on the feasible region. For squared error, L = cρ. For logistic
loss, L = n

√
dmax |Aij | ≈ n

√
d.

130

Bibliography

Pieter Abbeel, Daphne Koller, and Andrew Y. Ng. Learning factor graphs in polynomial time and sample complexity. J. Mach.
Learn. Res., 7:1743–1788, December 2006. ISSN 1532-4435. URL http://portal.acm.org/citation.cfm?id=
1248547.1248611. 1.2, 1.5.1, 2, 2.1.1, 2.1.3, 2.6, 2.6.1, 2.6.1, 2.6.1, 2.6.1, 2.6.1, 2.6.3, 2.6.4, 2.6.1, 2.6.6, 2.6.1, 2.6.7,
2.6.1, 2.6.1, 2.6.2, 2.6.4, 2.6.7, 2.6.7, 2.8.2, 5

Animashree Anandkumar, Dean P. Foster, Daniel Hsu, Sham M. Kakade, and Yi-Kai Liu. Two svds suffice: Spectral decompo-
sitions for probabilistic topic modeling and latent dirichlet allocation. In NIPS, 2012. 5.3.1

A.U. Asuncion, Q. Liu, A.T. Ihler, and P. Smyth. Learning with blocks: Composite likelihood and contrastive divergence. In
Artificial Intelligence and Statistics (AISTATS), 2010. 2.1.2, 2.8.1, 5.3.1

Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization technique occurring in the statistical analysis
of probabilistic functions of markov chains. The Annals of Mathematical Statistics, 41(1):164–171, 1970. 5.3.1, 5.3.2

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on
Imaging Sciences, 2(1):183–202, 2009. 4.4.3, B.2.6

J. Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179–195, 1975. 1.2, 2, 2.1.1, 2.2

T. Blumensath and M.E. Davies. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic
Analysis, 27(3), 2009. 4.4.4, 4.5.1, B.2.3

Leon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In NIPS, 2007. 4.4.2

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. ISBN 0521833787. B.2.7

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating
direction method of multipliers. In Foundations and Trends in Machine Learning. Now Publishers, 2011a. 2.8.1, 4.7.4, 6.2

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating
direction method of multipliers. In Foundations and Trends in Machine Learning. Now Publishers, 2011b. 4.4.5

Stephen Boyd and Almir Mutapcic. Stochastic subgradient methods. Lecture Notes for EE364b, Stanford University, 2008.
http://see.stanford.edu/materials/lsocoee364b/04-stoch_subgrad_notes.pdf. B.2.5

Joseph Bradley and Carlos Guestrin. Learning tree conditional random fields. In Proc. of the 27th Annual International Confer-
ence on Machine Learning, 2010. 3, 5.3.3

Joseph K. Bradley and Carlos Guestrin. Sample complexity of composite likelihood. In AISTATS, 2012. 2, 2.6.5, 6.1

Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate descent for l1-regularized loss
minimization. In Proc. of the 28th Annual International Conference on Machine Learning, 2011. 1.4, 4, 4.1

Alfred M. Bruckstein, David L. Donoho, and Michael Elad. From sparse solutions of systems of equations to sparse modeling
of signals and images. SIAM Review, 51(1):34–81, 2009. 4.1

Lucien Le Cam. Asymptotic Methods in Statistical Decision Theory. Springer, 1986. 5.3.1, 6.1

E.J. Candes and T. Tao. Decoding by linear programming. Information Theory, IEEE Transactions on, 51(12):4203–4215, 2005.
4.3.3

Emmanuel J. Candes and Terence Tao. Near-optimal signal recovery from random projections: Universal encoding strategies?
IEEE Trans. on Information Theory, 52(12):5406–5425, 2006. 4.3.3

Andrew Carlson. Coupled Semi-Supervised Learning. PhD thesis, Carnegie Mellon University, 2010. 6.4.2

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and Tom M. Mitchell. Toward an

131

http://portal.acm.org/citation.cfm?id=1248547.1248611
http://portal.acm.org/citation.cfm?id=1248547.1248611
http://see.stanford.edu/materials/lsocoee364b/04-stoch_subgrad_notes.pdf

architecture for never-ending language learning. In Proceedings of the Twenty-Fourth Conference on Artificial Intelligence
(AAAI 2010), 2010. 6.4, 6.4.1, 6.4.2

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. http://www.csie.ntu.edu.tw/

˜cjlin/libsvm. 5

Anton Chechetka and Carlos Guestrin. Efficient principled learning of thin junction trees. In NIPS, 2007. 1.3

Anton Chechetka and Carlos Guestrin. Evidence-specific structures for rich tractable crfs. In In Advances in Neural Information
Processing Systems (NIPS), Vancouver, Canada, December 2010. 3.1, 5.3.3

C.K. Chow and C.N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory,
14:462–467, 1968. 1, 1.3, 1.3, 1.5.1, 3, 3.1, 3.2.1, 5, 5.3.3, 5.3.4

Adam Coates, Paul Baumstarck, Quoc Le, and Andrew Y. Ng. Scalable learning for object detection with gpu hardware. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. 4.7.3

Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM, 50(3):280–305, 2003. 5.3.1

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51(1), 2004. 6.2

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using mini-batches. Journal
of Machine Learning Research, 13:165–202, 2012. 4.4.2

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the
Royal Statistical Society, Series B, 39(1):1–38, 1977. 5.3.1, 5.3.2

Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari. Nearest neighbor based greedy coordinate descent. In NIPS, 2011.
4.4.1, B.2.1

J. Dillon and G. Lebanon. Stochastic composite likelihood. JMLR, 11:2597–2633, 2010. 2.1.2

M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, and R.G. Baraniuk. Single-pixel imaging via compres-
sive sampling. Signal Processing Magazine, IEEE, 25(2), 2008. 4.3.2, 4.5.1

John Duchi, Alekh Agarwal, and Martin Wainwright. Dual averaging for distributed optimization: Convergence and network
scaling. To appear in IEEE Transactions on Automatic Control, 2012. 4.4.5, B.2.8

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of statistics, 32(2), 2004. 4.4.1, 4.5.1, B.2.4

J. Eidsvik, B.A. Shaby, B.J. Reich, M. Wheeler, and J. Niemi. Estimation and prediction in spatial models with block composite
likelihoods using parallel computing. Technical report, NTNU, Duke, NCSU, UCSB, under submission. 2.3.4

Pedro F. Felzenszwalb and Julian J. McAuley. Fast inference with min-sum matrix product. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(12):2549–2554, 2011. 5.3.1

M.A.T Figueiredo, R.D. Nowak, and S.J. Wright. Gradient projection for sparse reconstruction: Application to compressed
sensing and other inverse problems. Selected Topics in Signal Processing, IEEE Journal of, 2008. 4.4, 4.5.1

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of
Statistical Software, 33(1), 2010. 4.5.1, 4.5.1

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatis-
tics, 9(3):432–441, 2008. 4.7.2

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29:131–163, 1997. 3.1, 3.2.1

W.J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Comp. and Graphical Statistics, 1998. 4.1

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 6(6):721–741, 1984. 2.1.1, 5.3.1

B. Gidas. Consistency of maximum likelihood and pseudolikelihood estimators for gibbs distributions. In Proc. of Workshop
on Stochastic Differential Systems with Applications in Electrical/Computer Engineering, Control Theory, and Operations
Research, 1986. 2.1.2

S. Gilbert. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, 3rd edition, 1988. 4.3.1, B.1.6

Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. Residual splash for optimally parallelizing belief propagation. In In
Artificial Intelligence and Statistics (AISTATS), Clearwater Beach, Florida, April 2009. 5.3.1

Joseph E. Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. Parallel gibbs sampling: From colored fields to thin
junction trees. In AISTATS, 2011. 5.2, 5.3.2

132

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Henry W. Gould. Combinatorial identities: Table i: Intermediate techniques for summing finite series, vol. 4. http://www.
math.wvu.edu/˜gould/Vol.4.PDF, 2010. A.2.2

Scott Grauer-Gray, Chandra Kambhamettu, and Kannappan Palaniappan. Gpu implementation of belief propagation using cuda
for cloud tracking and reconstruction. In IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008), 2008. 4.7.3

Bingsheng He and Xiaoming Yuan. On the o(1/n) convergence rate of douglas-rachford alternating direction method.
Appearing in SIAM J. on Numerical Analysis, 2012. http://www.math.hkbu.edu.hk/˜xmyuan/Paper/
HeYuan-ADM-Complexity.pdf. 4.4.5

G. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation, 14:1771–1800, 2002. 1.2,
2.1.1, 5.3.1, 6.1

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58:13–30, 1963.
A.1.2, A.1.2, A.1.3

K.-U. Höffgen. Learning and robust learning of product distributions. In COLT, 1993. 3.3.4

Matt Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference. Arxiv 1206.7051v1, 2012. 5.3.1

R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1990. A.1.2

A. Hyvärinen. Estimation of non-normalized statistical models by score matching. JMLR, 6:695–709, 2005. 2.1.1, 2.8.2, 5.3.1,
6.1

A. Hyvärinen. Consistency of pseudolikelihood estimation of fully visible boltzmann machines. Neural Computation, 18(10):
2283–2292, 2006. 2.1.2

A. Hyvärinen. Some extensions of score matching. Computational Statistics & Data Analysis, 51(5):2499–2512, 2007. 2.1.1,
2.8.2, 5.3.1, 6.1

J. Gillenwater K. Ganchev, J. Graa and B. Taskar. Posterior regularization for structured latent variable models. Journal of
Machine Learning Research (JMLR), 2010. 2.8.3, 5.3.1, 5.3.2

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method for large-scale `1-regularized least squares.
IEEE Journal on Selected Topics in Signal Processing, 1(4):606–617, 2007. 4.1, 4.4.1, 4.4.3, 4.5.1, B.2.7

Ross Kindermann and James Laurie Snell. Markov Random Fields and Their Applications. American Mathematical Society,
1980. 1.1

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983. 3.6.2

S. Kogan, D. Levin, B.R. Routledge, J.S. Sagi, and N.A. Smith. Predicting risk from financial reports with regression. In Human
Language Tech.-NAACL, 2009. 4.5.1, 4.5.1

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized logistic regression. JMLR, 8:1519–1555,
2007. 4.4.1, 4.4.3, 4.5.2, B.2.7

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009. 1, 1.1

J.B. Kruskal, Jr. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. AMS, 7(1):48–50, 1956.
3.2.2

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In ICML, 2001. (document), 1, 1.1, 1.1.3, 1.2, 2.1.1

John Lafferty, Yan Liu, and Xiaojin Zhu. Kernel conditional random fields: Representation, clique selection, and semi-supervised
learning. In ICML, 2004. 2.8.3

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. In NIPS, 2009a. 4.4.2, 4.5.2, B.2.5

J. Langford, A.J. Smola, and M. Zinkevich. Slow learners are fast. In NIPS, 2009b. 4.1

Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y. Ng. On optimization methods for
deep learning. In ICML, 2011. 5.3.1, 6.1

Su-In Lee, Varun Ganapahthi, and Daphne Koller. Efficient structure learning of markov networks using l1-regularization. In
NIPS, 2006. 3.1

C. E. Leiserson. The Cilk++ concurrency platform. In 46th Annual Design Automation Conference. ACM, 2009. 4.5.1

D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. JMLR, 5, 2004.
4.5.2

133

http://www.math.wvu.edu/~gould/Vol.4.PDF
http://www.math.wvu.edu/~gould/Vol.4.PDF
http://www.math.hkbu.edu.hk/~xmyuan/Paper/HeYuan-ADM-Complexity.pdf
http://www.math.hkbu.edu.hk/~xmyuan/Paper/HeYuan-ADM-Complexity.pdf

Percy Liang and Michael Jordan. An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. In Proc.
of the 25th Annual International Conference on Machine Learning, 2008. 2, 2.1.1, 2.1.2, 2.3.1, 2.3.1, 2.3.3, 2.8.2, 5.3.2, 6.1

B. Lindsay. Composite likelihood methods. Contemporary Mathematics, 80:221–239, 1988. 1.2, 2, 2.1.1, 2.2

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical Programming,
45(1–3):503–528, 1989. 5.3.1

Han Liu, Kathryn Roeder, and Larry Wasserman. Stability approach to regularization selection (stars) for high dimensional
graphical models. In NIPS, 2010a. 5.3.4

Han Liu, Min Xu, Haijie Gu, Anupam Dasgupta, John Lafferty, and Larry Wasserman. Forest density estimation. In Proceedings
of the 23rd Annual Conference on Learning Theory, 2010b. 3.6.2

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein. Graphlab: A new
parallel framework for machine learning. In Conference on Uncertainty in Artificial Intelligence (UAI), Catalina Island,
California, July 2010. 5.1, 6.2

Daniel Lowd. Closed-form learning of markov networks from dependency networks. In UAI, 2012. 2.1.2

Daniel Lowd and Pedro Domingos. Learning arithmetic circuits. In UAI, 2008. 5.3.1, 5.3.4

G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale distributed training of conditional maxi-
mum entropy models. In NIPS, 2009. 4.1

Benjamin M. Marlin and Nando de Freitas. Asymptotic efficiency of deterministic estimators for discrete energy-based models:
Ratio matching and pseudolikelihood. 6.1

Andrew McCallum, Gideon Mann, and Gregory Druck. Generalized expectation criteria. Technical Report 2007-60, U. of
Massachusetts Amherst, 2007. 2.8.3, 5.3.1, 5.3.2

N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37(1):
246–270, 2009. 4.3.3

K. Nakazatoa and T. Arita. A growth model of community graph with a degree distribution consisting of two distinct parts.
Physica A: Stat. Mech. and Apps., 376:673–678, 2007. 3.4.1

Deanna Needell and Joel A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Communications
of the ACM, 53(12):93–100, 2010. 4.4.4, B.2.3

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. CORE Discussion Papers
2010002, January 2010. 4.2.2, 4.4.3

A.Y. Ng. Feature selection, l1 vs. l2 regularization and rotational invariance. In ICML, 2004. 1.4, 4.1, 4.2

Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild!: A lock-free approach to parallelizing stochastic
gradient descent. In NIPS, 2011. 4.4.5

M. Palatucci, D. Pomerleau, G. Hinton, and T. Mitchell. Zero-shot learning with semantic output codes. In NIPS, 2009. 3.4.2

N. Parikh and S. Boyd. Graph projection block splitting for distributed optimization. submitted, 2012. http://www.
stanford.edu/˜boyd/papers/block_splitting.html. 4.4.5, 4.7.4

Judea Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. In Proc. of the 7th Conference of
the Cognitive Science Society, pages 329–334, 1985. 1.1

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 2nd edition,
1988. 5.3.1

Hoifung Poon and Pedro Domingos. Machine reading: A k̈iller appf̈or statistical relational ai. In AAAI, 2010. 6.4

Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised learning using graphics processors. In Proc.
of the 26th Annual International Conference on Machine Learning, 2009. 4.7.3

P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. Model selection in gaussian graphical models: High-dimensional
consistency of l1-regularized mle. In NIPS, 2008. 1.3, 1.4, 3.2, 3.3.5

Pradeep Ravikumar, Martin J. Wainwright, and John Lafferty. High-dimensional ising model selection using l1-regularized
logistic regression. Annals of Statistics, 38(3):1287–1319, 2010. 1.3, 1.4, 2.1.2, 2.3.1, 3.1, 3.6.2, 3.6.3, 5.3.3, 5.3.4

M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107–136, 2006. 6.4

Saharon Rosset and Eran Segal. Boosting density estimation. In In Advances in Neural Information Processing Systems 15,
pages 641–648. MIT Press, 2002. 3.6.1

134

http://www.stanford.edu/~boyd/papers/block_splitting.html
http://www.stanford.edu/~boyd/papers/block_splitting.html

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:273–302, 1996. 1.1.2

Sushmita Roy, Terran Lane, and Margaret Werner-Washburne. Learning structurally consistent undirected probabilistic graphical
models. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages 905–912,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1. doi: http://doi.acm.org/10.1145/1553374.1553490. URL
http://doi.acm.org/10.1145/1553374.1553490. 2.1.3, 2.6.1, 2.1, 2.6.1, 2.6.2, 2.6.1, 2.6.3, 2.6.4, 2.6.6, 2.6.7,
2.6.1, 2.6.2, 2.6.3, 2.6.4

Ankan Saha and Ambuj Tewari. On the finite time convergence of cyclic coordinate descent methods, 2010. preprint
arXiv:1005.2146. 4.4.1, B.2.1

Chad Scherrer, Mahantesh Halappanavar, Ambuj Tewari, and David Haglin. Scaling up coordinate descent algorithms for large
`1 regularization problems. In ICML, 2012a. 4.4.5, 4.7.1, 5.2

Chad Scherrer, Ambuj Tewari, Mahantesh Halappanavar, and David Haglin. Feature clustering for accelerating parallel coordi-
nate descent. In NIPS, 2012b. 4.4.5, 4.7.1, 5.2

M. Schmidt, K. Murphy, G. Fung, and R. Rosales. Structure learning in random fields for heart motion abnormality detection.
In CVPR, 2008. 1, 1.1, 1.3, 2.1.1, 2.1.2, 3.1, 3.2, 3.2.2, 3.4, 3.4.1, 3.6.2, 3.6.3, 5.3.4

D. Shahaf, A. Chechetka, and C. Guestrin. Learning thin junction trees via graph cuts. In AI-Stats, 2009. 1.3, 3, 3.1, 3.2, 3.2.1,
3.2.2, 3.6.3, 5.3.3, 5.3.4

Shai Shalev-Schwartz and Ambuj Tewari. Stochastic methods for `1 regularized loss minimization. In ICML, 2009. 4.1, 4.2,
4.2.1, 4.2.1, 4.2.1, 4.2.1, 4.2.2, 4.4.1, 4.4.2, 4.5.2, B.1.2, B.1.3, B.1.3, B.2.1, B.2.5

S. Shalev-Shwartz and A. Tewari. Stochastic methods for `1 regularized loss minimization. JMLR, (12):1865–1892, 2011. 4.2.1

Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space embeddings of conditional distributions. In Proceed-
ings of the 26th Annual International Conference on Machine Learning, 2009. 2.8.3

Le Song, Byron Boots, Sajid Siddiqi, Geoffrey Gordon, and Alex Smola. Hilbert space embeddings of hilbert markov models.
In Proceedings of the 27th Annual International Conference on Machine Learning, 2010. 2.8.3

N. Srebro. Maximum likelihood bounded tree-width markov networks. AI, 143(1):123–138, 2003. 1.3, 3.1

C. Sutton and A. McCallum. Piecewise training for undirected models. In UAI, 2005. 1.2, 2.1.1, 2.1.2, 2.8.2, 3.1, 3.3.1, 3.3.1,
5.3.1, 6.1

C. Sutton and A. McCallum. Piecewise pseudolikelihood for efficient training of conditional random fields. In ICML, 2007.
2.1.1, 2.1.2, 2.8.2, 3.3.1, 3.3.1

M.F. Tappen, C. Liu, E.H. Adelson, and W.T. Freeman. Learning gaussian conditional random fields for low-level vision. In
CVPR, 2007. 3.4.2

Marc Teyssier and Daphne Koller. Ordering-based search: A simple and effective algorithm for learning bayesian networks. In
Proc. of the 21st Conference on Uncertainty in AI (UAI), 2005. 1.3, 5.3.3, 5.3.4

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal Statistical Society, 58(1):267–288, 1996. 4.1, 4.2

A. Torralba, K. Murphy, and W. Freeman. Contextual models for object detection using boosted random fields. In NIPS, pages
1401–1408, 2004. 1.3, 3.1, 5.3.3, 5.3.4

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deterministic and stochastic gradient optimization
algorithms. AC-31(9), 1986. 4.4.5

D. L. Vail, M. M. Veloso, and J. D. Lafferty. Conditional random fields for activity recognition. In Proc. 6th Intl. Joint Conf. on
Autonomous Agents and Multiagent Systems, pages 1–8, 2007. 1, 1.1

L.G. Valiant. A theory of the learnable. Comm. ACM, 27(11):1134–1142, 1984. 1.2, 2

E. van den Berg, M.P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, and O. Yılmaz. Sparco: A testing framework for sparse
reconstruction. ACM Transactions on Mathematical Software, 35(4), 2009. 4.3.2, 4.5.1

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001. 5.2

S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P. Murphy. Accelerated training of conditional
random fields with stochastic gradient methods. In ICML, 2006. 2.1.1, 6.1

M. Wainwright. Estimating the “wrong” graphical model: Benefits in the computation-limited setting. Journal of Machine
Learning Research, 7:1829–1859, 2006. 2.1.1, 2.8.1, 5.3.2, 6.1

M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. A new class of upper bounds on the log partition function. IEEE Transactions

135

http://doi.acm.org/10.1145/1553374.1553490

on Information Theory, 51(7):2313–2335, 2005. 5.3.1

Huahua Wang and Arindam Banerjee. Online alternating direction method. In ICML, 2012. 4.4.5

D. Weiss and B. Taskar. Structured prediction cascades. In AISTATS, 2010. 5.2

Z. Wen, D. Yin, W. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization
and continuation. SIAM Journal on Scientific Computing, 32(4), 2010. 4.1, 4.4.4, 4.5.1, B.2.2

Michael Wick, Andrew McCallum, and Gerome Miklau. Scalable probabilistic databases with factor graphs and mcmc. In
VLDB, 2010. 6.4, 6.4.2

Michael Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron Culotta, and Andrew Mccallum. Samplerank: Training factor
graphs with atomic gradients. In ICML, 2011. 5.3.1

S.J. Wright, D.R. Nowak, and M.A.T. Figueiredo. Sparse reconstruction by separable approximation. Signal Processing, IEEE
Transactions on, 57(7), 2009. 4.1, 4.5.1

W.A. Wulf and S.A. McKee. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Computer Architecture
News, 23(1), 1995. 4.5.3

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimization. JMLR, 11:2543–2596, 2010.
4.4.2, B.2.5

A. Yang, A. Ganesh, Z. Zhou, S. Sastry, and Y. Ma. A review of fast `1-minimization algorithms for robust face recognition.
preprint arXiv:1007.3753, 2010. 4.4

G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. A comparison of optimization methods and software for large-scale l1-reg.
linear classification. JMLR, 11, 2010. 4.1, 4.2.2, 4.4, 4.5.2, 4.5.2, 4.5.2

Yuchen Zhang, John C. Duchi, and Martin Wainwright. Communication-efcient algorithms for statistical optimization. In NIPS,
2012. 4.7.4, 5.1, 6.2

M. Zinkevich, M. Weimer, A.J. Smola, and L. Li. Parallelized stochastic gradient descent. In NIPS, 2010. 4.1, 4.4.2, 4.5.2, 4.7.4,
5.1, 6.2

136

	1 Introduction
	1.1 Probabilistic Graphical Models
	1.1.1 Markov Random Fields (MRFs)
	1.1.2 Inference
	1.1.3 Conditional Random Fields (CRFs)

	1.2 Parameter Learning
	1.3 Structure Learning
	1.4 Parallel Regression
	1.5 Summary and Main Contributions
	1.5.1 Contributions

	2 CRF Parameter Learning
	2.1 Related Work
	2.1.1 Categories of Parameter Learning Methods
	2.1.2 Pseudolikelihood and Composite Likelihood
	2.1.3 Canonical Parameterization

	2.2 Learning CRF Parameters
	2.3 Sample Complexity Bounds
	2.3.1 Parameter Estimation: MLE
	2.3.2 Parameter Estimation: MCLE
	2.3.3 Loss Reduction
	2.3.4 Disjoint vs. Joint Optimization
	2.3.5 PAC Bounds

	2.4 Empirical Analysis of Bounds
	2.4.1 Setup
	2.4.2 Comparing Bounds
	2.4.3 Eigenspectra

	2.5 Structured Composite Likelihood
	2.6 The CRF Canonical Parameterization
	2.6.1 Background: Canonical Parameterization for MRFs
	2.6.2 Extension to CRFs
	2.6.3 Extension to Arbitrary Structures
	2.6.4 Optimizing the Reference Assignment
	2.6.5 Relation to Pseudolikelihood
	2.6.6 Experiments
	2.6.7 Applications in Analysis

	2.7 Discussion
	2.8 Future Work
	2.8.1 Pseudolikelihood and Composite Likelihood
	2.8.2 Canonical Parameterization
	2.8.3 Alternate Learning Settings

	3 CRF Structure Learning
	3.1 Related Work
	3.2 Efficiently Recovering Tree CRFs
	3.2.1 A Gold Standard
	3.2.2 Score Decay Assumption

	3.3 Heuristic Scores
	3.3.1 Piecewise Likelihood
	3.3.2 Local CMI
	3.3.3 Decomposable Conditional Influence
	3.3.4 Sample Complexity
	3.3.5 Feature Selection

	3.4 Experiments
	3.4.1 Synthetic Models
	3.4.2 fMRI

	3.5 Discussion
	3.6 Future Work
	3.6.1 Learning Score Functions
	3.6.2 Learning Evidence Locality
	3.6.3 General Structures

	4 Parallel Regression
	4.1 Introduction
	4.2 L1-Regularized Loss Minimization
	4.2.1 Sequential Stochastic Coordinate Descent (Sequential SCD)
	4.2.2 Scalability of SCD

	4.3 Parallel Coordinate Descent
	4.3.1 Shotgun Convergence Analysis
	4.3.2 Theory vs. Empirical Performance
	4.3.3 Relaxing the Spectral Conditions on ATA
	4.3.4 Beyond L1

	4.4 Related Work
	4.4.1 Coordinate vs. Full Gradient Methods
	4.4.2 Batch vs. Stochastic Gradient
	4.4.3 First-Order, Second-Order, and Accelerated Methods
	4.4.4 Soft vs. Hard Thresholding
	4.4.5 Parallel Algorithms

	4.5 Experimental Results
	4.5.1 Lasso
	4.5.2 Sparse Logistic Regression
	4.5.3 Speedup of Shotgun

	4.6 Discussion
	4.7 Future Work
	4.7.1 Generalized Shotgun Algorithm
	4.7.2 Analysis for Other Models
	4.7.3 Shotgun on Graphics Processing Units (GPUs)
	4.7.4 Shotgun in the Distributed Setting

	5 Conclusions
	5.1 Model Structure and Locality
	5.2 Model- and Data-Specific Methods
	5.3 Roadmap for Learning MRFs and CRFs
	5.3.1 Parameter Learning Methods
	5.3.2 Guide for Practitioners: Parameters
	5.3.3 Structure Learning Methods
	5.3.4 Guide for Practitioners: Structure

	6 Future Work
	6.1 Unified Analyses of Parameter Learning
	6.2 Parallel Optimization in Heterogeneous Settings
	6.3 Unifying Our Methods
	6.3.1 Parameter Learning
	6.3.2 Structure Learning
	6.3.3 Parallel Regression

	6.4 Machine Reading
	6.4.1 Never-Ending Language Learner (NELL)
	6.4.2 Our Proposals

	A CRF Parameter Learning
	A.1 Composite Likelihood: Proofs from Ch. 2
	A.1.1 CRF Losses and Derivatives
	A.1.2 Parameter Estimation with MLE
	A.1.3 Parameter Estimation with MCLE
	A.1.4 Disjoint Optimization
	A.1.5 Bounding the KL with Bounds on Parameter Estimation Error

	A.2 Canonical Parametrization: Proofs from Sec. 2.6
	A.2.1 Proof of Theorem 2.6.14
	A.2.2 Proof of Theorem 2.6.16
	A.2.3 Proof of Theorem 2.6.17

	B Parallel Regression
	B.1 Proofs
	B.1.1 Detailed Proofs: for Squared Error and Logistic Loss
	B.1.2 Duplicated Features
	B.1.3 Detailed Proof: Theorem 4.2.1
	B.1.4 Detailed Proof: Theorem 4.3.1
	B.1.5 Detailed Proof: Theorem 4.3.2
	B.1.6 Detailed Proof: Lemma 4.3.3
	B.1.7 Shotgun with a Multiset

	B.2 Details of Algorithm Runtimes in Tab. 4.1
	B.2.1 Coordinate Descent
	B.2.2 Iterative Shrinkage/Thresholding
	B.2.3 Compressed Sensing
	B.2.4 Homotopy
	B.2.5 Stochastic Gradient
	B.2.6 Accelerated
	B.2.7 Interior Point
	B.2.8 Distributed

	Bibliography

